Wakulla Springs Baseline Ecosystem Assessment

September 2016

Prepared by The Howard T. Odum Florida Springs Institute

Howard T. Odum FLORIDA SPRINGS INSTITUTE

Wakulla Springs Baseline Ecosystem Assessment

September 2016

Prepared by The Howard T. Odum Florida Springs Institute

Table of (Contents
Figures	iii
Tables	iv
Acknowl	edgements5
Section 1	.0 Introduction
1.1 Bac	kground
Section 2	2.0 Methods
2.1 Intr	roduction
2.2 Phy	vsical Environment
2.2.1	Underwater Light Transmission10
2.2.2	Stream Discharge and Current Velocity11
2.2.3	Stream Segment Morphometry
2.2.4	Secchi Disk Visibility
2.2.5	Weather Station
2.2.6	Water Quality
2.3 Bio	logy
2.3.1	Plant Community Characterization
2.3.2	General Faunal Observations
2.3.3	Adult Aquatic Insects
2.3.4	Snails
2.3.5	Fish
2.3.6	Turtles
2.3.7	Human Use
2.4 Ecc	psystem Level Monitoring17
2.4.1	Ecosystem Metabolism
2.4.2	Nutrient Assimilation
2.4.3	Community Export
Section 3	B.0 Results 22
3.1 Phy	vsical Environment
3.1.1	Underwater Light Transmission
3.1.2	Stream Discharge and Current Velocity

3.1.3	Stream Segment Morphometry	
3.1.4	Secchi Disk Visibility	
3.1.5	Weather Station	
3.1.6	Water Quality	
3.2 Bio	logy	
3.2.1	Plant Community Characterization	
3.2.2	General Faunal Observations	
3.2.3	Adult Aquatic Insects	
3.2.4	Snails	
3.2.5	Fish	
3.2.6	Turtles	
3.2.7	Human Use	
3.3 Ecc	osystem Level Monitoring	43
3.3.1	Ecosystem Metabolism	
3.3.2	Nutrient Assimilation	
3.3.3	Community Export	
Section 4	4.0 Discussion	52
4.1 Ov	erview	52
4.2 Wa	ıkulla Spring Report Card	53
Section 5	5.0 References	55

Table of Exhibits

Figures

Figure 1. Wakulla River Ecosystem Baseline Project location	7
Figure 2. Wakulla River Ecosystem Baseline Assessment segment station locations	9
Figure 3. Underwater LI COR sensor used to measure PAR	10
Figure 4. Stream discharge measurement collected along a cross-section of the Wakulla River at U.S. Highway 98	11
Figure 5. Image of data sonde housing with holes that allow free movement of water, while the locking cap and cable provide security.	13
Figure 6. Trap used to collect adult aquatic insects as they emerge from the water	15
Figure 7. Apple snail egg clutch example	16
Figure 8. Example determination of ecosystem metabolism based on upstream- downstream dissolved oxygen data (from WSI 2007)	20
Figure 9. Image of plankton net capturing suspended material with flow meter upstream	21
Figure 10. PAR percent transmittance (@ 1m) and diffuse attenuation coefficient estimates by station	23
Figure 11. Average PAR percent transmittance (@ 1m) and diffuse attenuation coefficient estimates by monitoring date	24
Figure 12. Average PAR percent transmittance (@ 1m) for Florida spring runs	25
Figure 13. USGS 02327022 Wakulla River near Crawfordville, FL – daily average discharge	26
Figure 14. Wakulla River bathymetry – October 2015	27
Figure 15. Wakulla River Study Segment stage area / volume curves - October 2015	28
Figure 16. Annual rainfall record for Wakulla Area (1968-2015)	30
Figure 17. Average nitrate nitrogen concentrations in Florida springs (2001-2016)	32
Figure 18. Wakulla Spring annual nitrate concentrations	33
Figure 19. Average dissolved oxygen concentrations in Florida springs near the spring vents (study segment in red)	35
Figure 20. Typical diurnal pattern for dissolved oxygen and pH in the Wakulla River	36
Figure 21. Wakulla River bird survey summary for 2015-2016	38
Figure 22. FDEP Middle Wakulla River bird survey summary from 1989 to 2015	38
Figure 23. Wakulla River adult aquatic insect emergence rates compared to other Florida spring runs	40
Figure 24. Wakulla River fish density and biomass compared to other Florida springs	41

Figure 25. FDEP Middle Wakulla River turtle summer survey summary from 1989 to 2015	42
Figure 26. Wakulla River human use summary – October 2015	43
Figure 27. Comparison of ecosystem productivity and photosynthetic efficiency in Florida springs (based on historic and recent data from a total of 22 springs)	45
Figure 28. Gross primary productivity efficiency versus discharge in Florida springs (based on historic and recent data from a total of 22 springs)	46
Figure 29. Gross primary productivity efficiency versus NOx-N concentration in Florida springs (based on historic and recent data from a total of 22 springs)	47
Figure 30. Wakulla River estimated nutrient mass removals	48
Figure 31. Nutrient mass removals for Florida springs runs	49
Figure 32. Organic material export in Florida spring runs	51
Figure 33. Wakulla Spring 2016 Report Card	54

Tables

Table 1. Wakulla River flow measurements	25
Table 2. Wakulla River stage - area / volume relationship (October 2015) for the study segment sampled during this baseline assessment	26
Table 3. Horizontal Secchi Disk (ft) measurements in the Wakulla River	29
Table 4. Weather Summary – University of Florida FAWN Quincy and Monticello Stations	29
Table 5. Wakulla River average water quality grab sample results	34
Table 6. Wakulla River Side Spring/Stream average water quality grab sample results	34
Table 7. Wakulla River average water quality sonde measurements	35
Table 8. Wakulla River aquatic vegetation summary overall average for the study segment October 2015)	36
Table 9. Wakulla River aquatic vegetation transect importance value summary by station (October 2015)	37
Table 10. Wakulla River aquatic vegetation transect percent cover summary by station (October 2015)	37
Table 11. Wakulla River adult aquatic insect emergence rates	39
Table 13. Wakulla River fish summary – October 2015	41
Table 17. Rainbow River ecosystem metabolism estimates	44
Table 18. Wakulla River Particulate Export	50

Acknowledgements

The Howard T. Odum Florida Springs Institute (FSI) gratefully acknowledges the financial support of the Fish and Wildlife Foundation of Florida, Inc. "Wakulla Springs Baseline Assessment – A Citizen-Science Project" Tag Grant PFS 1516-09 for preparation of this report.

The following individuals volunteered their time to assist FSI staff with baseline data collection: Knox Bagwell, Tanner Dafoe, Paul Donsky, Kathryn Gibson, James Hennessey, Lewis Holcombe, Ryan Kilbride, Debbie Segal, Mackenzie Vecchio, and Robert Williams.

As with collection and analysis of all environmental data, techniques and interpretations may change over time. The raw data collected for this study are available from the Florida Springs Institute upon written request. The Director and staff of the Florida Springs Institute take full responsibility for any errors or omissions in this report.

Section 1.0 Introduction

1.1 Background

Florida's 1,000+ artesian springs are undergoing rapid environmental changes due to a variety of stressors, including reduced discharge, increased nitrate-nitrogen levels, excessive recreation, side effects of aquatic plant management, and structural alterations. These changes result in a shifting ecological baseline for each spring. As the state embarks on comprehensive restoration activities at these springs, there is often little historic data available to assess recovery or continuing decline. The Howard T. Odum Florida Springs Institute (FSI) is embarking on a number of projects to document existing baseline ecological conditions in the springs of Florida. Data collected for these baseline assessments, in combination with ecological data from previous studies will be used to provide a continuing record of changes, both positive and negative, in Florida's endangered springs and spring runs.

Wakulla Spring is one of the largest first-magnitude artesian springs in Florida and in the United States. Wakulla Spring lies within the Edward Ball Wakulla Springs State Park. Wakulla Springs State Park and Lodge are listed on the Natural Register of Historic Places and are a designated National Natural Landmark. A section of the Wakulla Spring run ecosystem, approximately 5.5 miles downstream of Wakulla Spring (upstream of U.S. Highway 98), has received limited previous scientific study and was utilized for this springs baseline assessment project (Figure 1). Wakulla Spring forms the headwaters of the Wakulla River which is nearly 11 miles long to where it merges with the St. Marks River at St. Marks, Wakulla County.

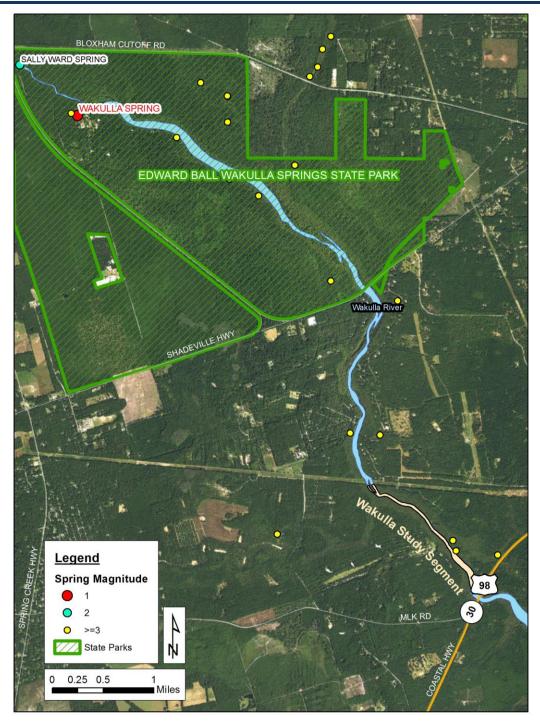


Figure 1. Wakulla River Ecosystem Baseline Project location

Section 2.0 Methods

2.1 Introduction

Florida's springs and spring runs are composed of a diverse and interconnected ecosystem of physical, chemical, and biological components. While most biological systems vary considerably due to seasonal changes in sunlight, temperature, and precipitation, this variation is greatly reduced in spring-fed aquatic ecosystems due to their groundwater supply. These natural groundwater discharges demonstrate relatively consistent water temperature, inflow volume, and water chemistry (Odum 1957; Knight 2015). The one major environmental factor that is seasonally variable in springs is the input of solar energy. This seasonal variability must be considered in springs data collection and analysis.

Spring ecosystem data collection occurred over two, 2-week periods (October 19-30, 2015; March 7-17, 2016) and included as many environmental variables as practical. The following ecological metrics were measured in the 1.4-mile long Wakulla River Segment that was the location of this ecosystem baseline assessment (Figure 2):

Physical Environment

- Insolation and photosynthetically active radiation (PAR) and underwater light transmission of PAR
- Stream discharge (water level and flow) and stream velocity
- Secchi disk visibility
- Segment morphometry (water surface area, water depth, and water volume)
- Water quality field parameters (temperature, pH, dissolved oxygen, conductance)

Water Chemistry

• Water chemistry (total Kjeldahl nitrogen [TKN], nitrate+nitrite nitrogen [NOx-N], and ammonia nitrogen [NH₄-N]. Total nitrogen [TN] and organic nitrogen [ON] were calculated.)

Biology

- Plant community characterization (species, coverage)
- Macrofauna observations (species and counts for emerging insects, snails, turtles, birds, and mammals)
- Human uses

Ecosystem Level

- Ecosystem metabolism metrics (gross primary productivity [GPP], net primary productivity [NPP], community respiration [CR], P/R ratio, and ecological efficiency)
- Nutrient assimilation
- Community export (fine particulate export)

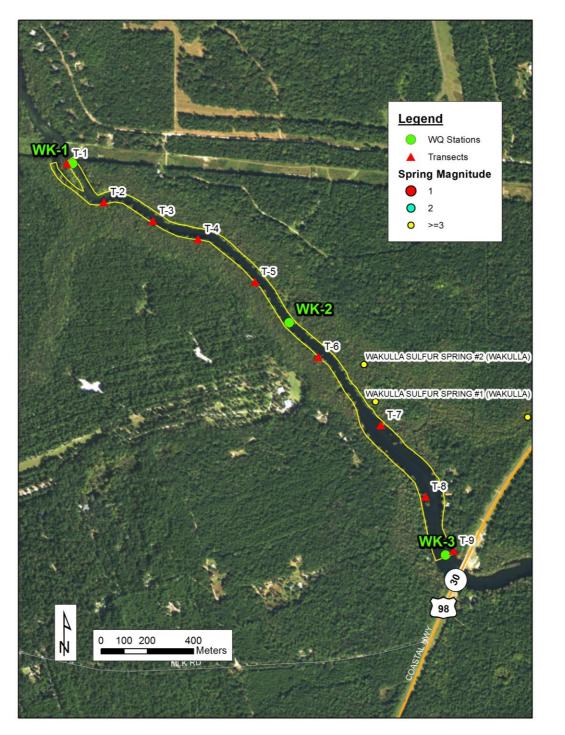


Figure 2. Wakulla River Ecosystem Baseline Assessment segment station locations

2.2 Physical Environment

2.2.1 Underwater Light Transmission

Photosynthetically Active Radiation (PAR) underwater light transmission and attenuation coefficients were measured within the study segment at WK-1, WK-2, and WK-3 in the Wakulla River (Figure 2) using LI-COR brand sensors; LI-200SA (surface quantum sensor), and LI-192 (underwater quantum sensor). Figure 3 provides a typical light senor installation. A LI-200SA sensor was used to measure PAR energy reaching the water surface, while an underwater LI-COR LI-192 sensor was used to measure PAR energy at multiple water depths. The underwater PAR sensor was attached to a weighted frame and readings were logged at 15 to 30 cm (0.5 to 1 ft) depth intervals from the surface to the bottom of the water column. Measurements at each depth were collected following at least a ten second stabilization period. Light extinction (attenuation) coefficients were calculated from these data using the Lambert-Beer equation (Wetzel 2001):

Iz = Io(e-kz)

Where:

Iz = PAR at depth z

Io = PAR at the water surface

k = diffuse attenuation coefficient, m⁻¹

z = water depth, m

Figure 3. Underwater LI COR sensor used to measure PAR

2.2.2 Stream Discharge and Current Velocity

Stream discharge and velocity were measured at downstream end of the study segment using the Marsh-McBirney Flo-Mate portable flow meter. A fiberglass tape was stretched across the stream channel at the U.S. Highway 98 bridge (Figure 4) perpendicular to the flow direction, allowing depth and velocity to be measured in approximately 25 evenly-spaced segments. At water depths less than 2.5 ft, velocity was measured at 0.6 of the water column. For water depths greater than 2.5 ft, velocity was measured at 0.2, 0.6, and 0.8 fractional depths of the water column. For each of the resulting cross-section sub-segments, velocity was multiplied by width and depth to calculate sub-segment discharge. The total discharge was calculated from the cumulative discharge of all cross-section sub-segments.

The USGS also maintains a discharge station upstream of the study segment at Shadeville Road (USGS 2327022, Figure 1). This station was used to estimate daily discharge within the study segment.

Figure 4. Stream discharge measurement collected along a cross-section of the Wakulla River at U.S. Highway 98

2.2.3 Stream Segment Morphometry

Segment depths were measured by use of a boat-mounted recording depth finder linked to the Global Positioning System (GPS). These data were processed using ArcGIS software to extrapolate the wetted surface area and volume of the spring study segment. Nominal hydraulic residence times were calculated in a spreadsheet for the study segment based on these estimated water volumes and the upstream and downstream flow estimates. These data were used to estimate the wetted surface area, mean depth, and water volume of the study segment. Nominal hydraulic residence times were calculated in a spreadsheet for the study segment. Nominal hydraulic residence times were calculated in a spreadsheet for the study segment. Nominal hydraulic residence times were calculated in a spreadsheet for the study segment based on these estimated water volumes and the upstream and downstream flow estimates.

2.2.4 Secchi Disk Visibility

Water clarity was rapidly assessed using Secchi disk visibility, the distance where the disk disappears from sight. In spring systems, this distance is commonly greater than the depth of the water column and Secchi disk visibility must be measured horizontally. Secchi distance was measured with a 20-centimeter diameter black and white disk attached to the end of a tape measure and held below the surface of the water. A skin diver then extended the tape while moving away from the disk until it is no longer visible.

2.2.5 Weather Station

Local area weather (rainfall, air temperature, solar radiation, and evapotranspiration) was estimated using the University of Florida – Florida Automated Weather Network (FAWN, http://fawn.ifas.ufl.edu/). The FAWN network includes a total of 44 weather stations throughout Florida reporting weather data at 15-minute increments. The closest FAWN stations to the Wakulla River Study Segment were in Quincy (32 miles) and Monticello (31 miles).

2.2.6 Water Quality

During each 2-week sampling period, field variables (water temperature, dissolved oxygen concentration, oxygen percent saturation, pH, conductivity and specific conductance) were measured and logged at 30 minute intervals using YSI 6920 recording data sondes.

Oxygen data were collected using optical sensors with automated wipers, which improve calibration and reduce instrument drift during deployment. Data sondes were deployed near the middle of the water column at the upstream and downstream ends of the study segment for periods up to 2-weeks (Figure 5). Data sondes were calibrated prior to deployment and subsequent to their retrieval for each sampling period following the manufacturers protocol.

Water chemistry samples were collected at the beginning and end of each study period, at the upstream, midpoint, and downstream stations. Water chemistry samples were collected as subsurface grabs. A rinsed water collection bottle was used to collect water samples from about 1 foot below the water surface and used to fill acid-preserved sample bottles. Following collection, samples were placed in an ice-filled cooler and delivered to the analytical laboratory for analysis within 24 hours. Water depth and field variables (temperature, dissolved oxygen, pH, and specific conductance) were also recorded during all water chemistry sampling events.

Water chemistry samples were analyzed for TKN, NOx-N, and NH₄-N by Advanced Environmental Labs, Gainesville FL, (FDOH certified laboratory # E82620).

Figure 5. Image of data sonde housing with holes that allow free movement of water, while the locking cap and cable provide security.

2.3 Biology

2.3.1 Plant Community Characterization

The distribution and percent cover of aquatic plant communities (macroalgae and submerged aquatic vegetation) in the study segment were visually estimated during the baseline sampling events. Aquatic vegetative cover was documented along transects at station T-1 through T-9 in

Impo

Wakulla Springs Baseline Assessment

the Wakulla River (Figure 2) using a semi-quantitative visual method. At each station, all aquatic vegetation within a transect-belt extending from shore to shore (perpendicular to flow) was recorded and percent cover estimated. Linear distance by species was estimated by multiplying the percent cover by the transect-belt distance. These data were used to estimate percent cover, frequency, relative cover, and relative frequency. Frequency was based on dividing the transect into 8 equal sized sub-transects. Values by species were summed and averaged to yield an importance value as follows:

Linear Cover Distance for Species $A = \sum$ line intercept distances for Species A (m)

Percent Cover =
$$\frac{\text{Linear cover distance of Species A (m)}}{\text{Total transect distance (m)}} \times 100$$

Relative Percent Cover = $\frac{\text{Linear cover distance of Species A (m)}}{\text{Total linear cover distance of all species (m)}} \times 100$
Absolute Frequency = $\frac{\text{Number of subtransec ts in which Species A occurred}}{\text{Total number of subtransec ts}}$
Relative Frequency = $\frac{\text{Absolute frequency of Species A}}{\sum \text{absolute frequencie s of all species}} \times 100$
rtance Value = $\frac{(\text{Relative Vegetative Cover + Relative Frequency})}{2}$

Observed plants were identified to species or lowest practicable taxonomic classification. No quantitative plant biomass samples are collected.

2.3.2 General Faunal Observations

Bird surveys were conducted during each study period on the Wakulla River from Shadeville Road to Highway 98 (Figure 2). Surveys started at the upstream location at sunrise and worked their way downstream with the current in canoe/kayak. All birds observed (visually or audibility) on the spring run and upland areas were counted and identified to species. These data were used to estimate bird population and diversity in the study area.

2.3.3 Adult Aquatic Insects

Aquatic insect species diversity and populations were characterized based on collections of adults as they emerge from the water. Insect emergence was measured through the use of floating pyramidal traps, each with a sampling area of 0.25 m² (Figure 6). The trap design was based on traps used for midge and mosquito sampling from wetland and aquatic environments (Walton et al. 1999). Each trap was constructed of wood and has four sides covered with fiberglass window screen. Flotation was provided by foam "noodles" attached along the bottom wooden supports. The traps work under the premise that insects emerging into the trap generally seek the highest spot and in the process travel through an inverted funnel into a 500 mL jar inverted over the end of the funnel. A total of up to ten traps were deployed at locations along the periphery of the spring run. At each location the substrate was noted. Traps were deployed and the jars containing the emergent insects collected at 24 to 48 hour intervals during

each study period. Insect identifications were made to the lowest practical taxonomic level. The number of insects captured in traps was used to calculate emergence rates and extrapolated across the wetted area of the study segment.

Figure 6. Trap used to collect adult aquatic insects as they emerge from the water

2.3.4 Snails

A visual survey for apple snail egg clutches was conducted within the Wakulla River (Figure 2). The number of egg masses and estimated clutch size (number of eggs per clutch) was documented along each shoreline within the study segment.

Figure 7. Apple snail egg clutch example

2.3.5 Fish

Visual surveys of the fish communities were made in the Wakulla River along two areas of the study segment (Figure 2), between T-1 to T-2 (0.9 ac) and T-8 to T-9 (1.1 ac). Surveys of fish communities were made in October 2015 by four to six people using mask and snorkel gear. The fish observers started at an upstream location and worked their way downstream with the current. The spring run segment was partitioned into approximately equal sections from bank-to-bank with one observer observing and counting in each section. Observers noted the fish species or groups of similar species (lowest practical taxonomic level) of all observed fish, and these observations were reported to a data recorder, who followed the observers in a boat. Following each survey, observers estimated the total length (average and range) by fish species. Fish density was calculated for each sub-section by dividing the average number of individuals counted, by the area sampled. Biomass of fish species was estimated using published lengthweight relationships (Schneider et al. 2000) and average species total lengths and numbers. Fish assemblage diversity was calculated using the Shannon-Wiener diversity index based on the calculated densities of individual species (Zar 1984).

2.3.6 Turtles

Quantitative monitoring of the aquatic turtle community was conducted on the study segment during each monitoring period. Turtle censuses were conducted during general wildlife surveys by volunteers and incidental observations during other field collection efforts. The aquatic turtle population density was reported as the number of individuals divided by the surface area of the study segment.

2.3.7 Human Use

Detailed observations of human use were made throughout the time that the study segment was visited. These observations were made from the boat ramp located at Highway 98 (Figure 2) for the visible portions of the spring run and surrounding upland areas. The count area is referred to as the "observation area". Primary water contact activities were categorized as: wading (less than waist deep), bathing (greater than waist deep and less than neck deep), swimming, snorkeling, tubing, canoeing/kayaking, power boating, and fishing. Primary out-of-water activities included: sitting, walking, sunbathing, and nature study.

For each of these activity categories, the counts of all persons within the observation area were made at 15 minute intervals. Individual counts were multiplied by 0.25 hours (15 minutes) to estimate the average person-hours throughout the period of observation. The total human-use during a one-day period, reported in units of person-hours, was estimated as the sum of the 15-minute counts as follows:

$$\sum_{t=1}^{t^2} no.persons.dt = \text{person-hours}$$

Where:

T = time (hours) t1 = time (start) t2 = time (finish)

Person-hour estimates are in turn divided by the total observation interval in hours to estimate an average number of persons involved in in-water and out-of-water activities for each day of observation. Water and upland areas within the zone of observation were estimated from maps and aerial photographs to normalize data on a per-area basis:

Human-Use Density = no. persons/area counted

The resulting data were tabulated and reported as the average number of persons and humanuse density (persons per area) basis by activity and location.

2.4 Ecosystem Level Monitoring

2.4.1 Ecosystem Metabolism

Ecosystem metabolism was calculated in the study segment using an Excel spreadsheet adaptation of the upstream/downstream dissolved oxygen (DO) change methods of H.T. Odum (1957a, 1957b). This method estimates and subtracts upstream from downstream DO mass fluxes corrected for atmospheric diffusion to determine the metabolic oxygen rate-of-change of the aquatic ecosystem. Dissolved oxygen mass inputs typically include spring discharges, atmospheric diffusion into the water column (when DO is less than 100% saturation), accretion from other undocumented stream or spring seep inflows, and the release of DO as a by-product of aquatic plant photosynthesis. Oxygen losses include diffusion from the water column to the atmosphere (under super-saturated conditions), the metabolic

respiration of the aquatic microbial, plant, and animal communities, and sediment biological oxygen demand.

The downstream DO concentration measured at any time is the net effect of these gains and losses as shown in the following conceptual equation:

 Δ DO = GPP - CR + Din + A

Where:

 Δ DO = DO rate-of-change, g O₂/m²/d

GPP = gross primary productivity, $g O_2/m^2/d$

CR = community respiration, $g O_2/m^2/d$

Din = diffusion into the water under unsaturated conditions, $g O_2/m^2/d$

A = accrual of DO from other spring boils, $g O_2/m^2/d$

The DO measurements used to estimate segment ecosystem metabolism were collected at the upstream and downstream end of each study segment at 30 minute intervals using recording YSI 6920 data sondes with optical DO sensors.

Upstream and downstream dissolved oxygen data were each shifted by one-half of the estimated travel time between the upstream and downstream study segment stations and an oxygen rate-of-change curve was prepared. Areas, volumes, current velocities and diffusion measurements were used to estimate ecosystem metabolism. Water surface area was estimated for the study segment using the survey methods described above and corrected hourly using an estimated stage: area relationship. Average velocities were estimated from the stage: volume relationship and spring discharge measurements. Nominal travel times for the water mass were estimated based on the length of the spring run and the estimated hourly current velocities.

This DO rate-of-change curve is corrected for atmospheric diffusion based on measured percent oxygen saturation in the water, and oxygen diffusion rates corrected for water velocity. The corrected oxygen rate-of-change curve for each 24-hour period was used to estimate gross primary productivity (GPP), community respiration (CR), net primary productivity (NPP), production/respiration (P/R) ratio, and ecological efficiency. Figure 8 illustrates these metabolism measurements based on development of a typical oxygen rate-of-change curve.

Descriptions of the ecosystem metabolism parameters follow below:

- Gross primary productivity (GPP) is estimated as the entire area under the oxygen rate-of-change curve, calculated by extending the nighttime corrected oxygen rate-of-change through the daylight hours and estimating the entire area under the daytime curve in g O₂/m²/d. GPP is a measure of all aquatic plant productivity occurring below the water surface within the study segment. GPP includes primary productivity of both algae (including photosynthetic bacteria) and submerged vascular plants.
- Community respiration (CR) is the average of the corrected nighttime oxygen rateof-change values in g $O_2/m^2/d$. CR is a measure of the total dark metabolism of the entire submerged ecosystem within each study segment. CR includes the respiration of all microbes in the sediments and water column, respiration of bacteria, algae, and

plants in the water column, and respiration of most aquatic animals, including protozoans, macroinvertebrates, crustaceans, and fish. Respiration of turtles, alligators, frogs, snakes, manatees, and other air-breathing aquatic fauna is not included in this calculation.

- Net primary productivity (NPP) is equal to the difference between these two estimates (GPP-CR). NPP provides an estimate of the net fixed carbon that remains each day after the respiratory needs of the aquatic ecosystem are met. CR may be higher than GPP in some streams and during some periods of time, indicating that there are unmeasured inputs of fixed carbon or losses of fixed carbon that were previously stored in the ecosystem.
- The P/R ratio or ecological quotient is equal to GPP/CR. A P/R ratio of one indicates that production and consumption are equally balanced. A ratio greater than one indicates an autotrophic aquatic ecosystem while a value less than one indicates a heterotrophic ecosystem.
- Photosynthetic efficiency (PE) is equal to the rate of gross primary productivity divided by the incident PAR during a specified time interval. It estimates the overall efficiency of an aquatic ecosystem to utilize the visible fraction of incident solar radiation, the principal forcing function for autotrophic stream ecosystems. PAR reaching the plant level is estimated based on river stage, the plant community characterization data for segment depth, and the light attenuation coefficient estimated for each sampling event. PE is reported as PAR Efficiency by dividing GPP in $O_2/m^2/d$ by mol/m²/d, resulting in units of g O_2/mol . PAR Efficiency is also reported as a percentage using the conversion factors employed by Knight (1980; 1983): 4.22 Kcal/g O_2 and 52.27 Kcal/mole of photons (McCree 1972).

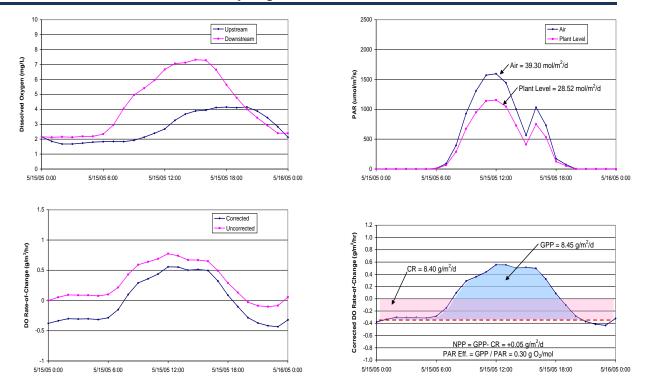


Figure 8. Example determination of ecosystem metabolism based on upstream-downstream dissolved oxygen data (from WSI 2007).

2.4.2 Nutrient Assimilation

Nutrient assimilation/dissimilation rates for TN, NOx-N, and NH₄-N were estimated for the study segment by calculating upstream-downstream changes in nutrient mass. Average nutrient mass inputs and outputs were estimated based on average water chemistry concentrations and flows over the period of study. Positive nutrient mass changes indicate assimilation/dissimilation of nutrients, while negative changes indicate an increase in nutrient mass with travel of the spring flow downstream.

2.4.3 Community Export

Community export was measured at both the upstream (WK-1) and downstream (WK-3) end of the study segment to allow an alternative method for estimating net ecosystem production within the segment. Community export of particulate suspended matter was quantified for the study segment using a plankton net suspended in the current at mid-depth (Figure 9). The mesh size on the plankton net was 153 μ m. Three replicate plankton net samples were collected at the upstream and downstream end of each segment. Sample material collected in the plankton net was rinsed into a sample bottle and returned to the laboratory for wet, dry, and ash-free (combusted at an oven temperature of 450 °C) dry weight analyses. As samples were collected, the velocity of the water at the mouth of the net was measured as was the time of net deployment. These data allow calculation of the volume of water passing through the net. The amount of particulate material collected in the net was expressed on a volume and area (based

on upstream wetted-area) basis. Particulate export results were reported as dry weight (DW) and ash-free dry weight (AFDW) per upstream area per time (g DW/m²/d and g AFDW/m²/d, respectively). Overall particulate export for the study segment was calculated as the difference between the upstream and downstream export rates.

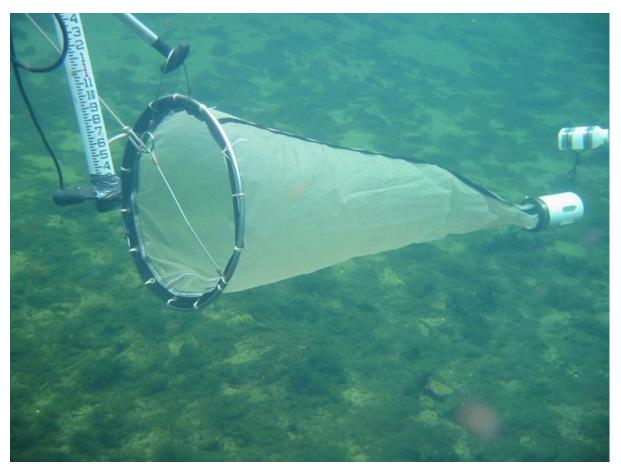


Figure 9. Image of plankton net capturing suspended material with flow meter upstream

Section 3.0 Results

3.1 Physical Environment

3.1.1 Underwater Light Transmission

The one major environmental factor that is seasonally variable in springs is the input of solar energy. The influx of light is the most important determinant of overall ecosystem primary productivity in clear-water springs. Light attenuation by dissolved and particulate matter in spring water limits solar energy available to submersed aquatic plants and other primary producers. Figure 10 and Figure 11 provide a summary of the percent transmittance and diffuse attenuation coefficient by station and by monitoring date. Detailed light measurement data are provided in Appendix A.

The percent transmittance between the stations averaged 48.3 percent at 1 m, ranging from 49.3 percent (WK-3) to 50.4 percent (WK-2), while the diffuse attenuation coefficient averaged 0.71 m^{-1} (range 0.69 to 0.74 m^{-1}).

The average percent transmittance for the entire spring run segment varied from 41.7 percent at 1 m (October 30, 2015) to 52.7 percent at 1 m (October 19, 2015), during the two baseline monitoring events. The diffuse attenuation coefficient ranged from 0.65 m⁻¹ to 0.88 m⁻¹ for the same time period.

Light transmittance values from the study segment were compared to other spring run systems in Florida and were less than average as shown in Figure 12. Light transmittance results from many of these systems were measured just downstream of the main spring vent (WSI 2010). Light transmittance values measured near spring vents generally are higher and show less variability than measurements farther downstream in the spring run. Much of this decline is the direct result of increasing particulate matter, resulting from the release of attached algal cells from plants and sediments with distance downstream. This release of particulate matter in spring runs is the combined result of natural causes like flow velocity and human causes from physical disturbance. The low water clarity documented in this study for the Lower Wakulla River was also the result of increased concentrations of tannic acids (black water) and particulates at the head spring (FSI 2014).

3.1.2 Stream Discharge and Current Velocity

Spring discharge is second only to solar input as one of the most important forcing functions that regulates overall spring habitat support of plant, fish, and wildlife communities. Stream discharge and velocity were measured at the downstream end of the study segment using portable flow meters.

Table 1 provides a summary of discharges measured during the baseline assessment at the downstream ends of the study segment, while Appendix B provides detailed discharge measurements. Stream discharges averaged 863 cfs and 921 cfs during the October 2015 and March 2016 events, respectively. Flow in this section of the Wakulla River was observed to be highly affected by the tide. Daily average discharge measured upstream from USGS 2327022 (Shadeville Road) is included in Table 1 for comparison.

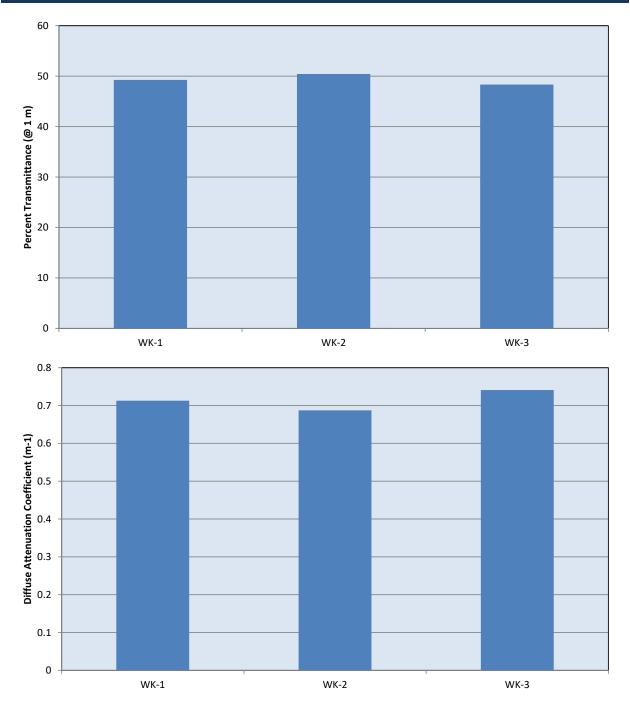
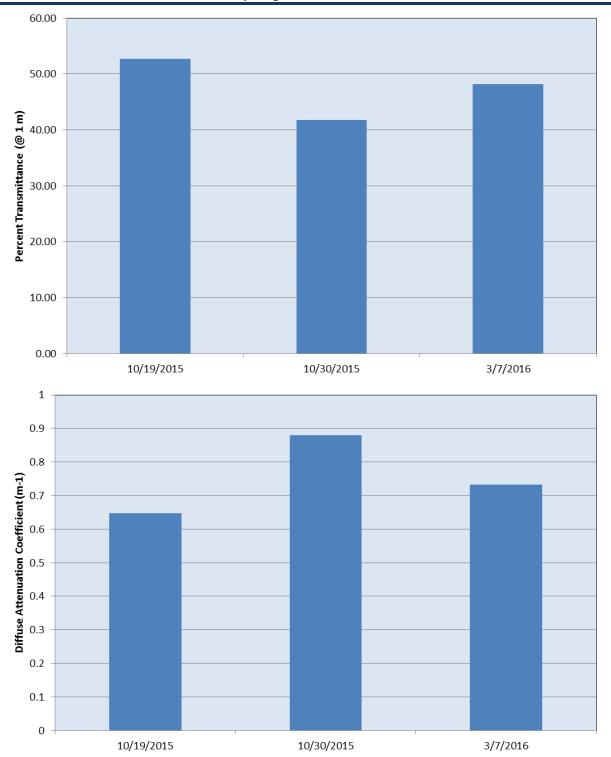



Figure 10. PAR percent transmittance (@ 1m) and diffuse attenuation coefficient estimates by station

Wakulla Springs Baseline Assessment

Wakulla Springs Baseline Assessment

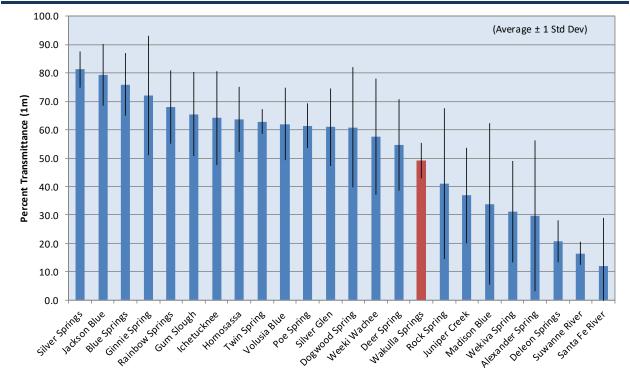


Figure 12. Average PAR percent transmittance (@ 1m) for Florida spring runs

Discharge was also measured at Sulphur Springs #1 (Figure 2) where it enters the Wakulla River in October 2016. This spring was found to contribute about 1.1 cfs.

Figure 13 provide summaries of average daily discharges along the Wakulla River for USGS 02327022 at Shadeville Road. Stream discharges averaged 708 cfs (range 201 cfs to 3,390 cfs) since 2004 displaying a marked increase over recent decades. The long-term median discharge of Wakulla Springs for the period-of-record from February 1907 until November 2007 was 344 cfs (FSI 2014). The recent discharge data indicate that average flows have more than doubled.

Date	Station	Width (ft)	Avg. Depth (ft)	Discharge (cfs)	USGS 02327022 (cfs)
10/20/15	WK-3	259	6.5	1,087	903
10/29/15	WK-3	234	6.1	639	878
3/8/16	WK-3	177	5.4	921	679
10/29/16	Sulphur Spring #1	23.5	2.4	1.12	

Table 1. Wakulla River flow measurements

4,000 Stats cfs Average 708 3,500 Median 682 3,390 Max Min 201 3,000 Std Dev 259 Ν 3,972 2,500 Discharge (cfs) 2,000 1,500 1,000 500 0 Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10 Apr-12 Aug-13 Dec-14 May-16 Sep-17

Wakulla Springs Baseline Assessment

3.1.3 Stream Segment Morphometry

Table 2 summarizes segment wetted area and volume relative to water elevation, estimated from depth data collected within the study segment (Figure 14) with stage area/volume curves provided in Figure 15.

The average wetted surface area and volume of the study segment during the study was 154,626 ft² (38.2 ac) and 18,236,019 ft³ (419 ac-ft), respectively. Nominal hydraulic residence time was estimated at 5.6 hours based on this estimated water volume and an average flow of 903 cfs during this period.

Water Depth	Ar	ea	Volume			
(ft)	(ac)	(ft²)	(ac-ft)	(ft³)		
16	38.2	154,626	419	18,236,019		
14	37.5	151,898	342	14,910,399		
12	34.5	139,516	268	11,693,660		
10	30.5	123,567	201	8,772,391		
8	26.9	108,792	142	6,198,548		
6	22.3	90,199	91.0	3,963,095		
4	17.4	70,430	48.5	2,112,114		
2	11.1	44,826	16.4	712,472		
0	0.00	0.00	0.00	0,000		

Table 2. Wakulla River stage - area / volume relationship (October 2015) for the study segment sampled during this baseline assessment

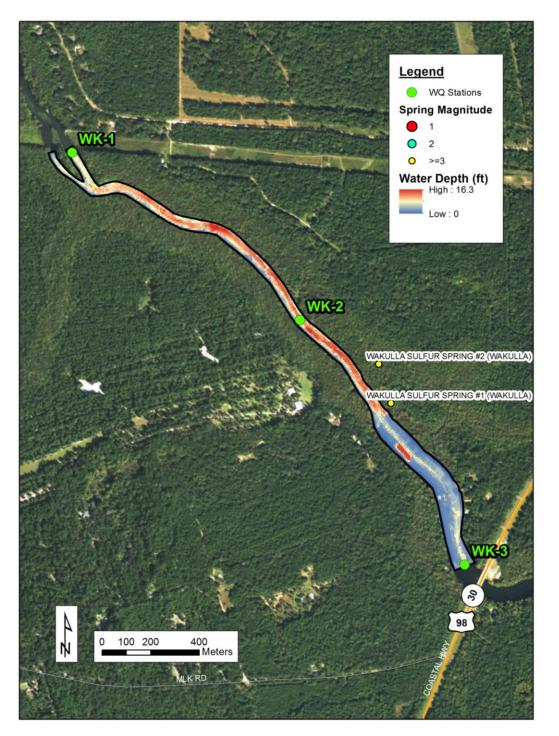


Figure 14. Wakulla River bathymetry – October 2015

Wakulla Springs Baseline Assessment

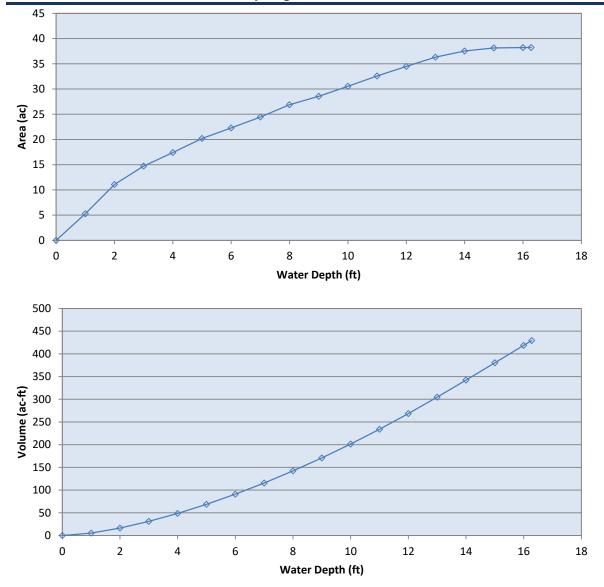


Figure 15. Wakulla River Study Segment stage area / volume curves - October 2015

3.1.4 Secchi Disk Visibility

Horizontal Secchi disk visibility measurements were collected on multiple dates at the upstream (WK-1), midpoint (WK-2), and downstream (WK-3) stations (Table 3). These measurements provide additional information concerning water clarity and the light attenuation properties of the spring run. Secchi disk visibility generally remained stable from upstream to downstream with an average difference of only 0.3 feet between WK-1 and WK-3.

Historically, water clarity in the Wakulla River has been variable due to inputs of tannic and high chlorophyll waters (FSI 2014). WSI (2010) reported Secchi disk readings of 9.2 feet in the Wakulla Spring pool in April 2009, while typical horizontal Secchi disk readings from other spring systems ranged from 200 to 300 feet.

Date	WK-1	WK-2	WK-3
10/5/2015	13.1	10.5	
10/19/2015	17.1	14.1	13.1
10/29/2015	13.1	12.1	17.1
10/30/2015	14.4	16.1	12.1
3/7/2016	17.1	6.9	17.1
3/17/2016		11.2	
Average	15.1	11.8	14.8

Table 3. Horizontal Secchi Disk (ft) measurements in the Wakulla River

3.1.5 Weather Station

Table 4 provides a monthly summary for air temperature, rainfall, solar radiation, and evapotranspiration during the study period.

Table 4. Weather Summary - University of Florida FAWN Quincy and Monticello Stations

Parameter	Stats	October 2015	March 2016
Air Temperature (C)	Average	68.3	63.1
	Min	45.3	33.1
	Max	91.2	86.3
Rainfall (in)	Total	0.44	4.57
Solar Radiation (W/m ²)	Average	155.9	179.8
	Max	221.9	271.0
Evapotranspiration (in)	Total	2.75	3.05

Long-term average rainfall in the springshed is about 62 in/yr and has been relatively consistent over the entire period-of-record (Figure 16; FSI 2014).

Wakulla Springs Baseline Assessment

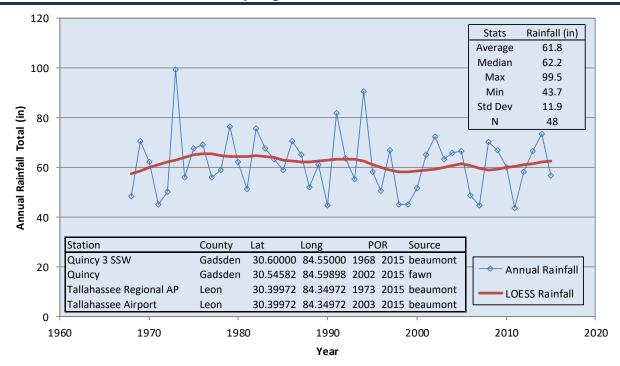


Figure 16. Annual rainfall record for Wakulla Area (1968-2015)

3.1.6 Water Quality

Water quality field parameters and grab samples for water chemistry analyses were collected at upstream (WK-1), midpoint (WK-2), and downstream (WK-3) stations during each 2-week sampling period. These parameters were collected to characterize water quality conditions concurrent with the other intensive sampling.

Table 5 provides a summary of average water quality grab sample results. Detailed water quality data are presented in Appendix C

Average TN concentrations decreased from 0.46 mg/L at the upstream station to 0.43 mg/L at the downstream station. The predominant form of nitrogen was NOx-N with an average low concentration of 0.33 mg/L at the downstream station to an average high concentration of 0.40 mg/L at the upstream station.

Nitrate data from the study segment were compared to other Florida springs as shown in Figure 17. The NWFWMD and FDEP have reported nitrate concentration data at Wakulla Spring from 1966 through 2014 (Figure 18). These data show an increase in nitrate at the head spring area from 0.09 mg/L in 1966 to 1.4 mg/L in 1987, with a decrease to 0.45 mg/L in 2014. The City of Tallahassee reduced nitrogen loads in the Wakulla Springshed by eliminating the use of fertilizer, removal of livestock at the Southeast Sprayfield and land application of nitrogen-containing biosolids, and completing treatment plant upgrades. Following these changes, nitrate concentrations in water from the Wakulla Spring vent declined. However, nitrate concentration reductions at Wakulla Spring appear to be at least partially the result of dilution due to increasing discharge at the spring (FSI 2014).

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 1		Average NOx-N (mg/L)													
4 Product (norm) 1 Product (norm) 0 Product (norm) 0 Product (norm) 0 100 Product (norm) 1 Product (norm) 1 Product (norm) 0 Product (norm) Product (norm) <td< th=""><th></th><th>(</th><th>0.0</th><th>1</th><th>.0 2</th><th>.0</th><th>3.0 4</th><th>.0</th><th></th><th>5.0</th><th>6.0</th><th></th><th>7.0</th><th>8</th><th>.0</th></td<>		(0.0	1	.0 2	.0	3.0 4	.0		5.0	6.0		7.0	8	.0
4 Product (norm) 1 Product (norm) 0 Product (norm) 0 Product (norm) 0 100 Product (norm) 1 Product (norm) 1 Product (norm) 0 Product (norm) Product (norm) <td< td=""><td></td><td>1</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>1</td></td<>		1				-					_				1
7 Image: Trans			3									_		_	
0 Descripting 1 bester, String 0 2 bester, String 0 2 bester, String 0 2 bester, String 0 2 bester, String 0			1												
13 Mais Sprig 1 Jackes Spring 4 Mais Spring 4 Mais Spring 4 Mais Spring 4 Mais Spring 6 Mais Spring 6 <td></td> <td>7</td> <td>3</td> <td></td>		7	3												
13 Mini Miner Grogi 1 Mini Singi 1 Abach Mini Verging 9 19 Mini Singi 1 MiniSingi 1 Mini Singi		10	1												
16 Native String 1 Indicate String 6 Note String 6 19 Native String 1 India String 6 Note String 6 19 Native String 1 India String 6 Note String 6 10 Rate String 1 Note String 6 Note String 10 10 Rate String 1 Note String 10 Rate String 10 <td></td> <td>13</td> <td>1</td> <td></td>		13	1												
19 Wakula A/K Turnel Wakula A/K Turnel Wakula A/K Turnel Wakula A/K Turnel 10 Wakula A/K Turnel Wakula A/K Turnel Wakula A/K Turnel Wakula A/K Turnel 10 Wakula A/K Turnel Wakula A/K Turnel Wakula A/K Turnel Wakula A/K Turnel 10 Wakula A/K Turnel Wakula A/K Turnel Wakula A/K Turnel Wakula A/K Turnel 10 Wakula A/K Turnel Wakula A/K Turnel Wakula A/K Turnel Wakula A/K Turnel 10 Wakula A/K Turnel Wakula A/K Turnel Wakula A/K Turnel Wakula A/K Turnel 10 Wakula A/K Turnel Wakula A/K Turnel Wakula A/K Turnel Wakula A/K Turnel 10 Wakula A/K Turnel Wakula A/K Turnel Wakula A/K Turnel Wakula A/K Turnel 10 Wakula A/K Turnel Wakula A/K Turnel Wakula A/K Turnel Wakula A/K Turnel 11 Wakula A/K Turnel Wakula A/K Turnel Wakula A/K Turnel Wakula A/K Turnel 12 Wakula A/K Turnel Wakula A/K Turnel Wakula A/K Turnel Wakula A/K Turnel 13 Wakula A/K Turnel <td< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		-													
22 Attach Grings 10 Batta Sing 6 Batta Sing 6 Batta Sing 10 25 Sing 10 Marting Falle Sing 10 Batta Sing		-	1												
22 1 Wardynett Biolog 1 Wardynett Biolog 9 Wardynet Biolog		19													
25 3 1 Nuts Ren (Ballon) 1 1 Ref Not 5 Genetic String 10 31 34 34 34 34 34 34 34 35 Genetic String 10 Ref Not 5 Genetic String 10 Genetic String 10 34 34 34 String Ref Ref (Ballon) 10 Ref Not 10 <		22													
28 3.1 3.		25	1							· · · · ·					
31 June Sings 35 Home, Market 36 Becages Hell Sings 10 34 34 June Sings 10 Becages Hell Sings 10 37 June Sings 10 Becages Hell Sings 10 Becages Hell Sings 10 37 June Sings 10 Becages Hell Sings 10 Becages Hell Sings 10 43 Wa kulla A//K Tunnel Wa kulla A//K Tunnel Wa kulla A//K Tunnel 10 Becages Hell Sings 10 10 10 10 10 10 10 10 10 10 10 10 <td< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		-													
34 37 40 40 40 40 40 40 40 40 40 40 40 40 40															
0 Corp Rise 19 Address Bar (Frie Korg) 10 Starting Frie Work(Multur) 10 Starting Frie Work (Multur) 10 10 Starting Frie Work (Multur) 10 Starting Frie Work (Multur) 10 10 Starting Frie Work (Multur) 10<		31													
377 400 433 WakullaA/KTunnel WakullaA/DTunnel WakullaA/DTunnel WakullaA/DTunnel WakullaA/DTunnel WakullaA/DTunnel WakullaSpring Sust P Form (Machal) 10 Corres Res 10 Corres Grap (Machal) 20 Sartato Sorrag 20 Sartato Sorrag 21		34													
40 State 5 pirg (Auta) 2) Garg Spirg (Harmad) 6) Son Spirg (Main 100 43 Wa kulla A/K Tunnel Wa kulla A/K Tunnel Spirg (Spirg (Harmad) 6) Anis Spirg 110 46 Wa kulla A/K Tunnel Wa kulla A/K Tunnel Spirg (Spirg (Harmad) 6) Anis Spirg 110 49 Wa kulla A/K Tunnel Spirg (Carmad) 7) Anis Spirg 110 70 Spirg 110 55 Wa kulla Spirg (Spirg (Harmad) 8) Haron Spirg (Main 10) 7) Aphal Spirg 110 70 55 Wa kulla Spirg (Spirg (Spirg (Haron)) 70 70 70 70 61 Wa kulla Spirg (Spirg (Spirg (Haron)) 70 70 70 70 61 Wa kulla Spirg (Spirg (Haron)) 70 70 70 70 61 Wa kulla Spirg (Spirg (Haron)) 70 70 70 70 61 Mark Spirg (Spirg (Haron)) 70 70 70 70 61 Mark M Rog Spirg (Carma) 70 70 70 70 70 70 70 70 70 70 70		37													
43 Wakulla A/K Tunnel See Sing 20 See Sing 60 Dect Sing 60 Dect Sing 11 46 Wakulla A/D Tunnel Wakulla K Tunnel See Sing 12 Dect Sing 12 Dect Sing 11 Dect Sing		-													
44.5 Wakula A/D Tunnel Wakula A/D Tunnel Wakula K Tunnel Wakula Spring Back Spring		-	y	Vakull	a A / K Tunne										
40 Wakulla KTunnel 20 Maxim Spring (1000) 00 Maxim Spring (1000) 00 Maxim Spring (110) 52 Wakulla KTunnel Spring Spring (1000) 21 Maxim Spring (110) Maxim Spring (110) 53 Wakulla Spring Max 12 Spring Spring (1000) 21 Maxim Spring (110) 54 Wakulla Spring Max 12 Maxim Spring (110) Maxim Spring (110) 55 Wakulla Spring Max 12 Maxim Spring (110) Maxim Spring (110) 56 Wakulla Spring Max 12 Maxim Spring (110) Maxim Spring (110) 61 Maxim Spring (110) 13 Spring Spring (110) 13 Spring Spring (110) 61 Maxim Spring (110) 13 Spring Spring (110) 13 Spring Spring (110) 61 Maxim Spring (110) 13 Spring Spring (110) 13 Spring Spring (110) 13 61 Maxim Spring (110) 13 Spring Spring (110) 13 Spring Spring (110) 13 Spring Spring (110) 13 70 Maxim Spring (110) 13 Spring Spring (110) 13 Spring Spring (110)		43	-												
49 Wakulia K Tunnel Jear Spring #10 22 Dasabatexia Spring Main 71 Depails Spring 114 52 Wakulia K Tunnel Jear Spring #10 21 Lark Spring 71 Merces Opring 115 58 Wakulia S pring 21 Lark Spring 72 Skrint Blas Spring 116 61 Merces Opring #1 71 Marces Opring #1 71 Marces Opring #1 71 61 Merces Opring #1 71 Marces Opring #1 71 Marces Opring #1 71 61 Merces Opring #1 71 Marces Opring #1 71 Marces Opring #1 71 61 Merces Opring #1 71 Marces Opring #1 71 Marces Opring #1 71 61 Merces Opring #1 71 Marces Opring #1 71 Marces Opring #1 71 62 700 70 71 Marces Opring #1 73 71 Marces Opring #1 73 71 Marces Opring #1 73 Marces Opring #1 73 71		46		Vakui		21									
9 Wakullak turintel Wakullak turintel 1 Marinsongan 1		49	;,	A / - 1											
55 Wakulla Spring 28 key Bus Spring 72 Bindrod Spring 74 Nationassi 27 Nationassi 2		-		wаки	lak lunnei										
58 Wark units Spring 30 Bandrod Spring 74 Readow Spring #1 118 61 64 64 56 57 58 58 57 58 58 57 58 58 57 58 58 57 58 58 57 58 58 57 58 58 57 58 58 57 58 58 57 58 58 57 58 58 57 58 58 57 58 58 57 58 58 57 58 58 57 58 58 57 58 58 57 58 58 59 57 58 58 57 58 58 57 58 58 57 58 58 57 58 58 57 58 58 58 57 58 58 58 57 58 58 58 58 58 58 59 59 59		-													
58 61 71 Ford partial giving 31 Ford partial giving 11 Ford partial giving 12				Wakı	IllaSpring										
0 0 1 PaceSpring 33 Walke Tobby Chunnel 77 Hat Springs 121 0 64 67 70 Hat Spring 34 Pace DE Leon Spring 78 Liths Springs Major 121 0 700 70 9 Nakuta Tobby Chunel 77 Running Springs 123 0 Rock Big 9 126 Nakuta Tobby Chunel 78 Running Springs 123 700 70 78 78 78 78 78 78 79 9 Nakuta Toby Chunel 78 126 126 73 76 Nakuta Toby Chunel 78 126		58													
64 Troon-the Spring 34 Proce Len Springs 72 Bains Spring 123 67 70 Rode Birls Spring 13 35 Wakufi Tiding DTunel 79 Bains Spring 123 73 70 73 8 Hakufi Tiding DTunel 79 Rode Birls Spring 124 73 76 Wakulla CTunnel 79 Bains Spring 125 38 Alapta River Rue 81 Jadpette Birls Spring 125 76 Wakulla CTunnel Wakulla DTunel 74 100 Bains Spring 125 38 Spring 126 Alapta River Rue 81 Jadpette Birls Spring 126 76 Wakulla DTunnel Wakulla DTunnel Wakulla DTunnel Wakulla DTunnel Wakulla DTune 81 Jadpette Birls Spring 133 82 Wakulla B Tunnel Wakulla BTunnel Wakulla BTunnel 97 Faming Spring 131 84 Wakulla B Tunnel Wakulla BTunnel Wakulla BTunnel 97 100 103 106 109 104 104 104 104 104 104 104 1		61													
73 73 76 Wakulla CTurnel Bance Spring #2 88 Alapha River Hise 82 Lafsyette Blue Spring (185) 79 Wakulla DTurnel Rodes Spring #1 30 Spring methods 81 Haps Spring (Jackson) 127 82 Makulla D Turnel Wakulla D Turnel Wakus Spring #4 41 Bubbing Spring 85 Apopta Spring 139 82 Wakulla D Turnel Wakus Spring #4 41 Bubbing Spring 85 Apopta Spring in 129 82 Wakulla D Turnel Wakus Spring #4 41 Bubbing Spring 85 Apopta Spring in 129 82 Wakulla D Turnel Wakus Spring #4 41 Bubbing Spring 87 Farning Springs 131 82 Wakulla B Turnel Wakus Spring #4 41 Bubbing Spring 88 14 91 94 97 97 100 103 106 109 112 115 118 121 124 124 124 124 124 124 124 124 127 124 124 124 124 124 125	≙	64													
73 73 76 Wakulla CTurnel Bance Spring #2 88 Alapha River Hise 82 Lafsyette Blue Spring (185) 79 Wakulla DTurnel Rodes Spring #1 30 Spring methods 81 Haps Spring (Jackson) 127 82 Makulla D Turnel Wakulla D Turnel Wakus Spring #4 41 Bubbing Spring 85 Apopta Spring 139 82 Wakulla D Turnel Wakus Spring #4 41 Bubbing Spring 85 Apopta Spring in 129 82 Wakulla D Turnel Wakus Spring #4 41 Bubbing Spring 85 Apopta Spring in 129 82 Wakulla D Turnel Wakus Spring #4 41 Bubbing Spring 87 Farning Springs 131 82 Wakulla B Turnel Wakus Spring #4 41 Bubbing Spring 88 14 91 94 97 97 100 103 106 109 112 115 118 121 124 124 124 124 124 124 124 124 127 124 124 124 124 124 125	g														
73 73 76 Wakulla CTurnel Bance Spring #2 88 Alapha River Hise 82 Lafsyette Blue Spring (185) 79 Wakulla DTurnel Rodes Spring #1 30 Spring methods 81 Haps Spring (Jackson) 127 82 Makulla D Turnel Wakulla D Turnel Wakus Spring #4 41 Bubbing Spring 85 Apopta Spring 139 82 Wakulla D Turnel Wakus Spring #4 41 Bubbing Spring 85 Apopta Spring in 129 82 Wakulla D Turnel Wakus Spring #4 41 Bubbing Spring 85 Apopta Spring in 129 82 Wakulla D Turnel Wakus Spring #4 41 Bubbing Spring 87 Farning Springs 131 82 Wakulla B Turnel Wakus Spring #4 41 Bubbing Spring 88 14 91 94 97 97 100 103 106 109 112 115 118 121 124 124 124 124 124 124 124 124 127 124 124 124 125 125 126	i														
73 Phodes Spring 11 38 Sphon Creek Rise 83 Hays Spring (Jackson) 127 76 Wakulla C Tunnel Hodes Spring 24 40 Wakulg Bring 128 84 Jackson Bus Spring 84 79 Wakulla D Tunnel Wakulla D Tunnel Wakulla D Tunnel 42 Life Spring (Jackson) 85 Shong-La Springs 130 82 Wakulla B Tunnel Wakulla B Spring 44 Wakulfer Goring 86 Springs 131 84 Wakulla B Tunnel 44 Wakulfer Goring 86 Springs 131 85 Wakulla B Tunnel 44 Wakulfer Goring 86 Springs 131 88 Wakulla B Tunnel 44 Wakulfer Goring 86 Springs 131 88 Wakulla B Tunnel 44 Wakufer Goring (Swammet) 86 Latyster Ruth Spring 132 91 94 97 <td>S</td> <td>70</td> <td>}</td> <td></td>	S	70	}												
76 Wa kulla CTunnel Rodes Spring #2 40 Wadula Tubing B-Tunnel 84 Jackson Blue Spring 128 79 Wa kulla D Tunnel Wakula Lobg XK-Tunel 41 Bubbing Spring 65 Appha Spring 129 82 Wakula D Tunnel Wakula D Tunnel Wakula D Tunnel 41 Bubbing Spring 67 Shangrit La Springs 131 82 Wakula D Tunnel Wakula D Tunnel 43 Wakula D Tunnel 44 Debug Spring 42 44 Shangrit La Springs 131 85 Wakula D Tunnel Wakula D Tunnel 44 Debug Spring 44 Debug Spring 42 44 Debug Spring 42 45 Lackson Bue Spring 128 85 Wakula D Tunnel Wakula D Tunnel 44 Debug Spring 44<		73	1												
Wakulla D Tunnel Wakuf Tunnel Wakuf Tund XK Tund 42 Lite Spring (Harado) 86 Sharpita Shirpita 5 Japris 130 Sharpita 5 Japris 131 Japris 130 Wakuf Laborat Spring (Swanne) 80 Sharpita Shirpita 130 Wakuf Run Spring 131 Japris 131 J		76	3												
82 Volusia Blue Spring 43 Willford Spring 87 Earning Springs 131 85 Wa kulla B Tunnel 44 Uctetucinee Head Spring (Suwamee) 88 Lafayette Ruth Spring 132 88 91 94 97		-													
85 Wakulla B Tunnel 1		-				mer									
85 88 91 94 97 100 103 106 109 112 115 118 121 124 127		82		14			Natural Bridge Spring	44	4 Iche	etucknee Head Spring (Suwan	nee) 8	38 La	afayette Ruth Spring	132	
91 94 97 100 103 106 109 112 115 118 121 124 127		85		vv	akullab lur	mei									
91 94 97 100 103 106 109 112 115 118 121 124 127		88													
94 97 100 103 106 109 112 115 118 121 124 127		01													
97 100 103 106 109 112 115 118 121 124 127		-													
100 103 106 109 112 115 118 121 124 127		-	1												
103 106 109 112 115 118 121 124 127		97													
106 109 112 115 118 121 124 127		100	1												
106 109 112 115 118 121 124 127		103	3												
109 112 115 118 121 124 127															
112 115 118 121 124 127															
115 118 118 121 124 124 127 124			3												
118 121 124 127		112													
118 121 124 127		115													
121 124 127															
124 127															
127															
		124													
		127													
		100													J

Average NOx-N (mg/L)

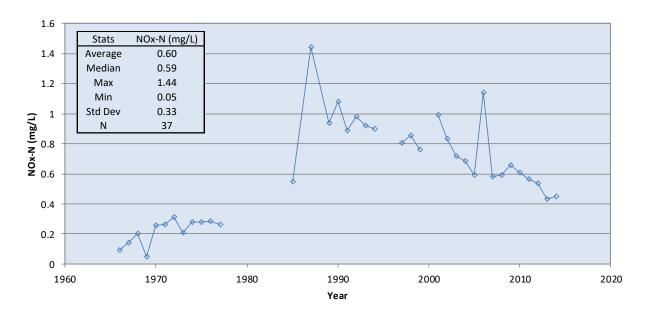


Figure 18. Wakulla Spring annual nitrate concentrations

Dissolved oxygen (DO) increased slightly from the upstream to downstream station in October 2015, while a decrease was observed in March 2015. Water temperature and pH remained relatively unchanged on average, while conductivity showed an increase during the March 2016 period. This increase is presumably due to inputs from Sulphur Springs (Figure 2, Table 6), between the middle (WK-2) and downstream (WK-3) stations. Turbidity was low throughout the Wakulla River segment with average measured values of 0.3 NTU.

Dissolved oxygen data from the study segment were compared to other Florida springs (near the spring vents) as shown in Figure 19.

Table 7 summarizes average field parameter data collected every 30 minutes with the water quality data sondes at the upstream (WK-1) and downstream (WK-3) stations during the baseline monitoring events. Detailed time series plots are presented in Appendix C.

Dissolved oxygen concentrations and pH were observed to vary in a diurnal pattern (Figure 20), showing a rise in concentration during the day due to primary productivity and decreasing concentrations at night as a result of community respiration.

PARAMETER GROUP	PARAMETER	UNITS	WAK-1	WAK-2	WAK-3
OCTOBER 2015					
DISSOLVED OXYGEN	DO	%	55.7	54.5	58.3
	DO	mg/L	5.06	4.95	5.26
NITROGEN	NH4-N	mg/L	0.040	0.020	0.010
	NOx-N	mg/L	0.295	0.290	0.295
	OrgN	mg/L	0.017	0.065	0.127
	TKN	mg/L	0.044	0.085	0.137
	TN	mg/L	0.352	0.375	0.432
PHYSICAL	рН	SU	7.63	7.53	7.52
	SpCond	umhos/cm	312	312	314
	Turbidity	NTU	0.3	0.3	0.4
TEMPERATURE	Wtr Temp	С	18.3	18.3	18.9
MARCH 2016					
DISSOLVED OXYGEN	DO	%	74.2	65.7	72.6
	DO	mg/L	6.68	5.76	6.76
NITROGEN	NH4-N	mg/L	0.010	0.013	0.015
	NOx-N	mg/L	0.495	0.390	0.365
	OrgN	mg/L	0.070	0.065	0.048
	TKN	mg/L	0.068	0.068	0.050
	TN	mg/L	0.575	0.470	0.428
PHYSICAL	рН	SU	7.62	7.64	7.71
	SpCond	umhos/cm	324	325	389
TEMPERATURE	Wtr Temp	С	20.4	19.7	19.7

Table 5. Wakulla River average water quality grab sample results

Table 6. Wakulla River Side Spring/Stream average water quality grab sample results.

PARAMETER GROUP	PARAMETER	UNITS	SS#1	SS#2	Stream
DISSOLVED OXYGEN	DO	%	8.6	58.7	61.0
	DO	mg/L	0.77	5.74	5.47
PHYSICAL	рН	SU	7.29	7.59	7.55
	SpCond	umhos/cm	4,066	824	1,927
TEMPERATURE	Wtr Temp	С	20.0	19.8	20.4

Wakulla Springs Baseline Assessment

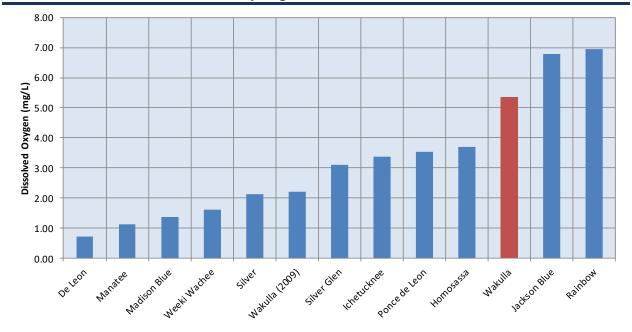


Figure 19. Average dissolved oxygen concentrations in Florida springs near the spring vents (study segment in red)

PARAMETER GROUP	PARAMETER	UNITS	WAK-UP	WAK-DN
October 19 – 30, 2015				
DISSOLVED OXYGEN	DO	%	62.0	66.9
	DO	mg/L	5.50	5.93
PHYSICAL	рН	SU	7.77	8.27
	SpCond	umhos/cm	320	327
	Turb	NTU	0.4	0.7
TEMPERATURE	Wtr Temp	С	21.1	21.2
March 7 - 17, 2016				
DISSOLVED OXYGEN	DO	%	78.5	80.7
	DO	mg/L	6.96	7.15
PHYSICAL	рН	SU	8.05	8.00
	SpCond	umhos/cm	321	334
TEMPERATURE	Wtr Temp	С	21.0	21.2

Table 7. Wakulla River average water quality sonde measurements

Wakulla Springs Baseline Assessment

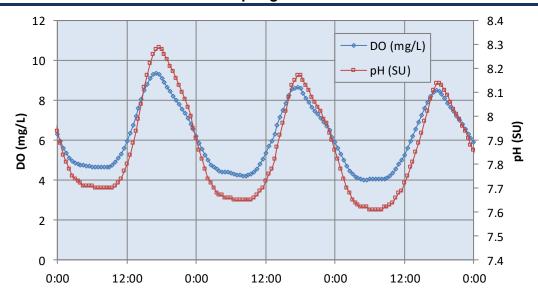


Figure 20. Typical diurnal pattern for dissolved oxygen and pH in the Wakulla River

3.2 Biology

3.2.1 Plant Community Characterization

The distribution and percent cover of aquatic plant communities (macroalgae and submerged aquatic vegetation) within the spring run at Wakulla River study area transects (Figure 2) is summarized in Table 9 and Table 10. Detailed aquatic plant data are provided in Appendix D.

A total of 4 plant and algal species or groups were identified at the Wakulla River monitoring transects during the October 2015 monitoring event. These included tape grass (*Vallisneria americana*), filamentous algae, fanwort (*Cabomba caroliniana*), and Southern-naiad (*Najas quadalupensis*). Bare sand and mud had an average percent cover of approximately 40 percent, while all aquatic vegetation combined averaged 80 percent. A range of 1 to 4 aquatic vegetation species occurred within the nine vegetation transects.

Table 8. Wakulla River aquatic vegetation summary overall average for the study segmentOctober 2015).

		Total	Cover Frequency				
Scientific Name	Common Name	Distance (m)	%	Relative	Absolute	Relative	Importance Value
Vallisneria americana	Tape grass	203	36.0	45.1	0.667	26.1	35.6
Algae	Algae	128	22.7	28.4	0.889	34.8	31.6
Cabomba caroliniana	Fanwort	95.6	17.0	21.3	0.667	26.1	23.7
Najas guadalupensis	Southern naiad	23.6	4.18	5.24	0.333	13.0	9.1
	Total	450	79.8	100	2.56	100	100.0

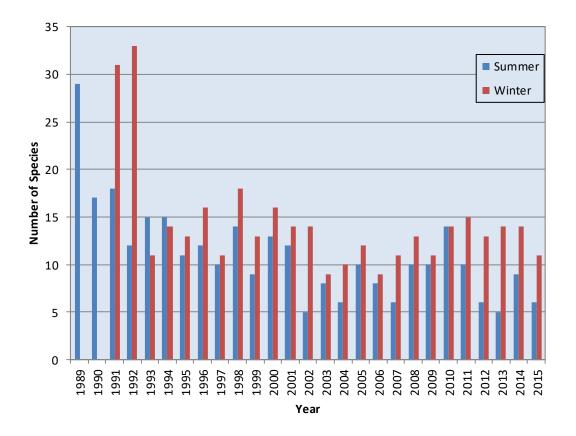
Table 9. Wakulla River aquatic vegetation transect importance value summary by station(October 2015)

					Wakulla	River Ti	ransects	;		
Scientific Name	Common Name	T-1	T-2	T-3	T-4	T-5	T-6	T-7	T-8	Т-9
Algae	Algae	15.2	72.6	56.3		43.9	67.1	29.2	20.8	22.9
Cabomba caroliniana	Fanwort	32.8		43.8	100	37.5	32.9			18.8
Najas guadalupensis	Southern naiad	26.0							24.3	14.6
Vallisneria americana	Tape grass	26.0	27.4			18.6		70.8	54.9	43.8
		100	100	100	100	100	100	100	100	100

Table 10. Wakulla River aquatic vegetation transect percent cover summary by station (October 2015)

		Wakulla River Transects									
Scientific Name	Common Name	T-1	T-2	T-3	T-4	T-5	T-6	T-7	T-8	Т-9	
Algae	Algae	2	20	50		42	80	5	8	25	
Cabomba caroliniana	Fanwort	15		30	80	32	15			15	
Najas guadalupensis	Southern naiad	10							15	5	
Vallisneria americana	Tape grass	10	1			3		55	75	75	
		37	21	80	80	77	95	60	98	120	

Aquatic vegetation has been surveyed in the Wakulla River and was summarized in the Wakulla Spring Restoration Action Plan (FSI 2014). Findings from two 2003 surveys identified microalgae coverage ranging from 41 to 51 percent near the Wakulla Spring pool area. Aquatic vascular plant coverage from the same area averaged 52 to 70 percent (hydrilla, strap-leaved sagittaria and southern naiad). WSI (2010) reported approximately 85 percent coverage of submersed aquatic vegetation, including benthic algae, in the upper spring run in 2009. The most common plants being hydrilla and tape grass. Historically, problematic aquatic plants (including hydrilla) have been managed in the upper Wakulla River by the state through the use of herbicide applications and mechanical harvesting methods.


3.2.2 General Faunal Observations

Along the spring run and upland areas, there was a total of 57 bird species observed (42 species in October 2015; 46 species in March 2016) [Figure 21]. The most commonly occurring species were the double-crested cormorant, red-winged blackbird, Northern parula, American goldfinch, turkey vulture, and common yellowthroat. Detailed bird survey data are provided in Appendix E.

Figure 22 provides a summary of the number of bird species observed during summer and winter surveys of the middle Wakulla River by FDEP from 1989 to 2015. The average number of bird species observed was 12.7 species with a range from 5 to 33 species.

Figure 21. Wakulla River bird survey summary for 2015-2016

3.2.3 Adult Aquatic Insects

Table 11 presents a summary of adult aquatic insect emergence rates from the Wakulla River spring run study segment. Insect emergence rates averaged 45 organisms/m²/d and 16 organisms/m²/d in October 2015 and March 2016, respectively. This equates to approximately 5,850,200 organisms/day over the study segment area on average. The most commonly collected insects were non-biting midges (*Diptera*), with 80% of the sample belonging to this family.

Figure 23 provides a summary of estimated adult aquatic insect emergence rates compared with other Florida spring run systems studied using the same emergent trap technique, including results from Wakulla Spring in 2009 (WSI 2010). The Wakulla Spring study segment had a lower than average insect emergence rate compared to the other springs studied.

				De	ployment Da	ate	
Order	Suborder	Family	10/19/15	10/29/15	Avg	3/7/16	Avg
Diptera	Nematocera	Ceratopogonidae		2	1		0
		Chironomidae	71	81	76	21	21
		Tipulidae			0	1	1
Ephemeropte	era			1	0.5		0
Hemiptera	Heteroptera	Veliidae			0	1	1
Lepidoptera	Glossata	Pyralidae	1		0.5	3	3
Odonata	Anisoptera	-	7	1	4		0
Trichoptera	-	-	2	17	9.5	3	3
Total			81	102	91.5	29	29
Emergence R	ate (#/m ² /d)		37	54	45	16	16

Table 11. Wakulla River adult aquatic insect emergence rates

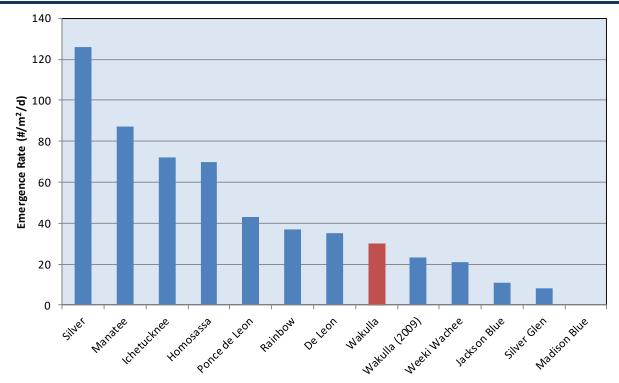


Figure 23. Wakulla River adult aquatic insect emergence rates compared to other Florida spring runs

3.2.4 Snails

Only one cluster of apple snail eggs was observed during the October 19, 2015 event. None were observed during the March 2016 monitoring periods.

3.2.5 Fish

Table 11 presents the fish survey data from October 2015 with detailed fish data are provided in Appendix F. A total of 4 fish species or groups of similar species were observed during the survey. Fish density and biomass in the Wakulla River spring run study segment averaged 214 fish/ac and 5.3 lbs/ac, respectively (**Error! Reference source not found.**). Minnows (*Notropis s p.*) and sunfish (*Lepomis sp.*) were observed at the highest densities. The Shannon-Wiener diversity index (H') was only 0.27, due to the limited number of species and uneven distribution.

Estimated fish biomass and population densities were compared with other Florida springs studied using the same visual count technique (WSI 2010). Figure 24 visually displays this comparison of the Wakulla River study segment to other Florida springs. For the study segment, the estimated fish densities and biomass were the lowest of the other studied springs.

Table 12. Wakulla Ki	er fish summary	- Octor	ber 2015	
Scientific Name	Common Name	Count	Density (#/ac)	Biomass (lbs/ac)
Lepomis sp.	Sunfish sp.	10	4.91	0.242
Micropterus salmoides	Largemouth Bass	1	0.491	0.016
Notropis sp.	Minnows	420	206	0.750
Mugil cephalus	Striped mullet	5	2.46	4.24
	Total	436	214	5.25

Table 12. Wakulla River fish summary - October 2015

Survey Area: T-1 to T-2 (0.89 ac) and T-8 to T-9 (1.14 ac); Total 2.04 ac

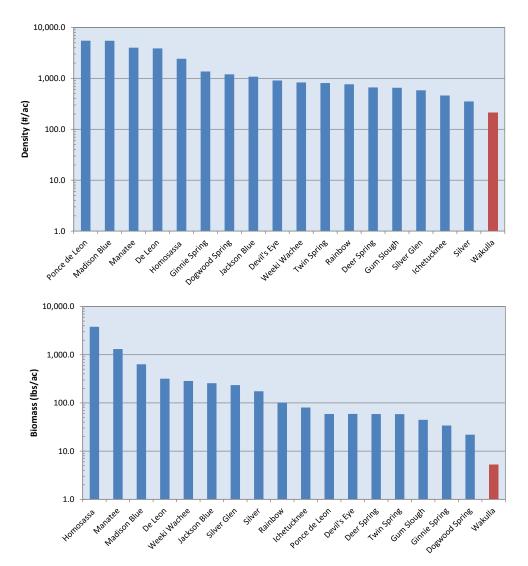


Figure 24. Wakulla River fish density and biomass compared to other Florida springs

3.2.6 Turtles

On average, an average of 45 individual turtles were observed within the study segment during wildlife surveys (49 in October 2015 and 41 in March 2016). The Suwannee cooter (*Pseudemys cocinna*) were the most common for both survey periods. This resulted in an estimated average turtle population density of 1.2 turtles/ac

Figure 25 provides a summary of turtles surveyed during the summer on the middle Wakulla River by FDEP 1989 to 2015. The average number observed from this period was 110 turtles with a range from 12 to 319.

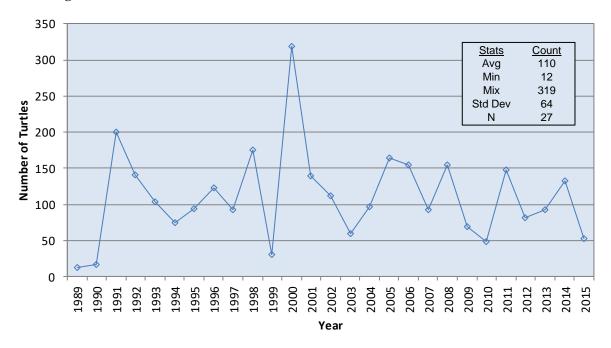


Figure 25. FDEP Middle Wakulla River turtle summer survey summary from 1989 to 2015

3.2.7 Human Use

Figure 26 provides a summary for total in-water and out-of-water activities at the downstream study segment (Highway 98) in October 2015. Detailed human use survey activities are summarized in Appendix G.

This area of the spring run received higher levels of human activity during the warmer season (October 2015). Due to the low numbers observed during the colder season (March 2016), only incidental observations of human activity were recorded (Appendix G). In October 2015, inwater activities averaged 0.6 people/ac with canoe/kayaking and power boating being the most common activities. Out-of-water activities averaged 0.5 people/ac for the same survey period, with walking and sitting being the most common. Incidental human use activities observed in the study segment during March 2016 included power boating, paddleboard, scuba, and fishing.

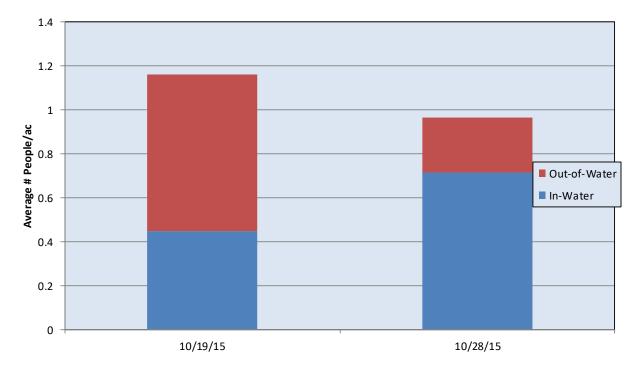


Figure 26. Wakulla River human use summary – October 2015

3.3 Ecosystem Level Monitoring

3.3.1 Ecosystem Metabolism

Table 13 provides a summary of ecosystem metabolism parameters collected in the study segment with detailed results in Appendix H. Average GPP ranged from 15.37 g $O_2/m^2/d$ (October 2015) to 21.91 g $O_2/m^2/d$ (March 2016) over the study period. CR ranged from 13.62 g $O_2/m^2/d$ (October 2015) to 22.98 g $O_2/m^2/d$ (March 2016), resulting in an average NPP of 2.62 g $O_2/m^2/d$ in October 2015, to 0.81 g $O_2/m^2/d$ in March 2016. For these data the estimated P/R ratio ranged from 1.06 (March 2016) to 1.29 (October 2015), and the photosynthetic efficiency ranged was from 7.81% (or 0.97 g O_2/mol) in March 2016, to 8.70% (or 1.08 g O_2/mol) in October 2015.

Ecosystem metabolism estimates from the study segment were compared to similar data from other Florida springs that have previously been studied (Figure 27). This comparison indicates that the study segment has a high GPP, NPP, and CR compared to other spring systems. When normalized for the amount of incident solar radiation, the study segment was found to have a photosynthetic efficiency above average compared to other Florida springs.

Figure 28 and Figure 29 shows the existing data relating photosynthetic efficiency, spring discharge, and NOx-N concentration for the studied Florida spring systems. The study segment follows the same general relationship observed for other springs. In general, spring photosynthetic efficiency increases with increasing spring discharge (Figure 28), while NOx-N concentration may have a subsidy-stress effect on photosynthetic efficiency (Figure 29).

	GPP	NPP	CR		PAR (24hr)	PAR Efficiency	PAR Efficiency
Stats	(g O ₂ /m ² /d)	(g O ₂ /m ² /d)	(g O ₂ /m ² /d)	P/R Ratio	(mol/m ² /d)	(%)	(g O ₂ /mol)
October 20	- 30, 2015						
Avg	15.37	2.62	13.62	1.29	20.96	6.09	0.75
Max	22.20	5.55	22.39	2.26	31.62	8.06	1.00
Min	6.13	0.08	3.37	1.01	6.14	4.72	0.58
March 8 – 1	17, 2016						
Avg	21.91	0.81	22.98	1.06	31.40	5.74	0.71
Max	27.19	3.30	39.87	1.23	36.09	7.17	0.89
Min	14.93	-2.46	12.10	0.92	24.90	3.38	0.42

Table 13. Rainbow River ecosystem metabolism estimates

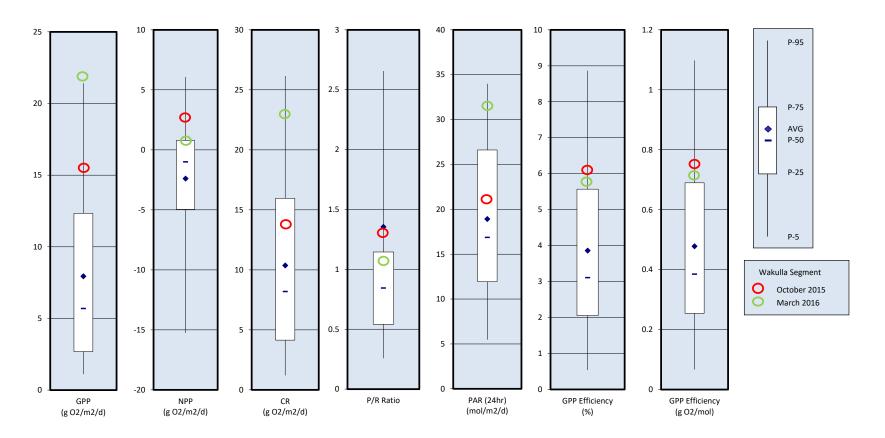


Figure 27. Comparison of ecosystem productivity and photosynthetic efficiency in Florida springs (based on historic and recent data from a total of 22 springs)

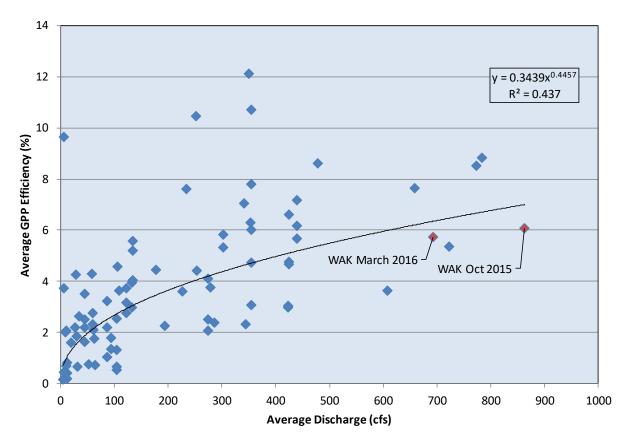


Figure 28. Gross primary productivity efficiency versus discharge in Florida springs (based on historic and recent data from a total of 22 springs)

Wakulla Springs Baseline Assessment

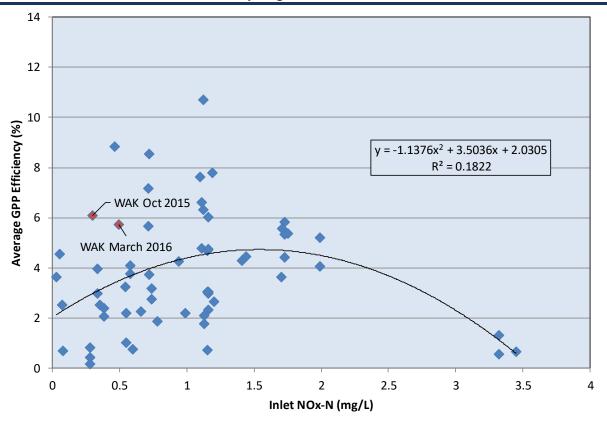


Figure 29. Gross primary productivity efficiency versus NOx-N concentration in Florida springs (based on historic and recent data from a total of 22 springs)

3.3.2 Nutrient Assimilation

Figure 30 provides a summary of the average mass removals in the study segment with details provided in Appendix I. The mass of TN was reduced by an average of 2.5 lbs/ac/d within the study segment with NOx-N being the dominant fraction (6.6 lbs/ac/d). The mass of OrgN increased 5.7 lbs/ac/d, resulting in a TKN increase of 4.8 lbs/ac/d in the study segment. NH₄-N slightly decreased within the study segment (1.6 lbs/ac/d).

Nutrient mass removal data from the study segment were compared to other Florida springs runs as shown Figure 31. This comparison indicates that the study segment mass removal rates are within ranges observed in other Florida spring runs. Average mass removals estimated during this study were very similar to those estimated at the upper Wakulla spring run during 2009, with the exception of OrgN.

Wakulla Springs Baseline Assessment

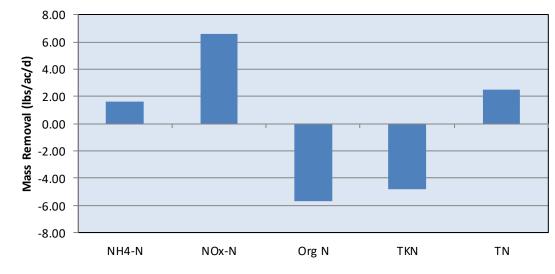


Figure 30. Wakulla River estimated nutrient mass removals

Wakulla Springs Baseline Assessment

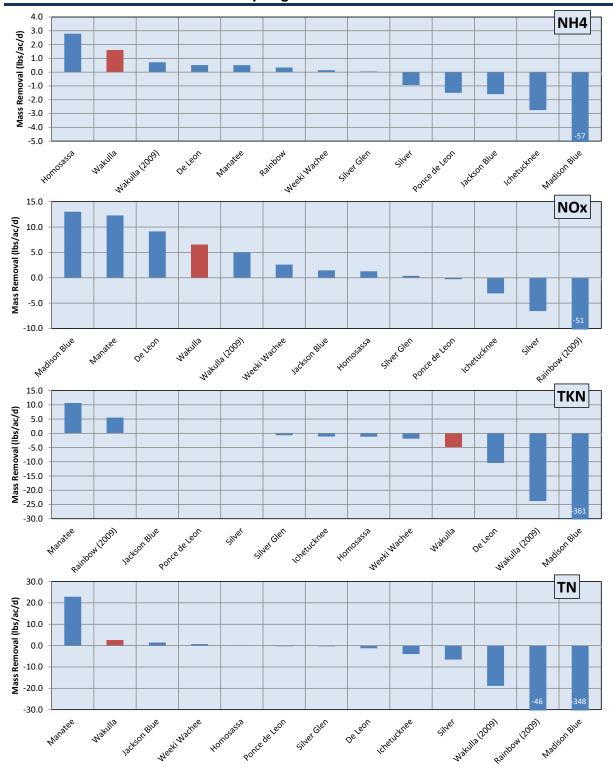


Figure 31. Nutrient mass removals for Florida springs runs

3.3.3 Community Export

Community export data for the study segment are summarized in Table 14 with detailed data provided in Appendix J. Segment particulate organic matter export rates varied widely. Positive values indicate a net production of detrital material (material leaving the study segment), while negative values indicate a net accrual of detrital material (material being deposited in the study segment). For October 2015, organic matter export rates were negative for the first event (-0.055 g/m²/d) and positive for the second event (0.146 g/m²/d). The estimated net organic matter export rate was positive for the March 2016 sampling events (0.043 g/m²/d).

Particulate organic matter export data from the study segment were compared to other Florida spring runs as shown Figure 32.

Date	Station	Dry Matter (g/d)	Organic Matter (g/d)	Dry Matter (g/m²/d)	Organic Matter (g/m²/d)
10/20/2015	WK-1	212,424	117,221	0.355	0.196
	WK-3	183,405	106,138	0.244	0.141
	Segment	-29,019	-11,084	-0.111	-0.055
10/29/2015	WK-1	188,567	121,307	0.315	0.203
	WK-3	464,809	262,038	0.618	0.348
	Segment	276,243	140,731	0.303	0.146
3/8/2016	WK-1	121,300	66,191	0.203	0.111
	WK-3	170,866	115,366	0.227	0.153
	Segment	49,566	49,175	0.024	0.043

Table 14. Wakulla River Particulate Export

Segment Areas: Head Spring to WK-1 (598,930 m²); Head Spring to WK-3 (752,709 m²); WK-1 to WK-3 (153,779 m²)

Organic Matter Export g/m²/d)

1.00 0.50 0.00 -0.50

Poncedeleon

 Wakulla Springs Baseline Assessment

 4.50

 4.00

 3.50

 3.00

 2.50

 2.00

 1.50

Deleon Siner Ger week wattee

silver

Nanate Homosasa Una Lineuchnee Nadison Bue

Watulia

or ladson alue Rainbow

Section 4.0 Discussion

4.1 Overview

Wakulla Springs is an enigma among Florida's studied springs (FSI 2014). Nitrate levels rose for decades into the 1990s before starting a rapid decline to current levels. Significant public efforts to reduce nitrogen loading to Wakulla Springs began in the past two decades when it was confirmed that anthropogenic loading (primarily from the City of Tallahassee's spray field effluent disposal system) was the dominant source of nitrogen to area groundwaters. In fact, the City's efforts to reduce nitrogen loading from effluent disposal is currently the most expensive "springs restoration" project in the State's history. But, as pointed out by FSI (2014) the spring nitrate concentrations were already declining before the City made significant changes in their treatment process. At the same approximate time, flows from Wakulla Springs were rising, in spite of relatively constant rainfall inputs. Subsequent hydrogeological studies, aided by the unprecedented knowledge about the underground, interconnected cave system feeding groundwater to Wakulla and nearby Springs Creek springs, determined that Wakulla was pirating flows that historically went to its sister spring system on the nearby coast. A more likely explanation of the declining nitrate levels in the Wakulla River is that treatment plant upgrades are being measurably augmented by dilution from low-nitrogen groundwater.

The Wakulla River spring run baseline study segment was about 1.4 miles in length, had a wetted surface area of about 38.2 ac, a water volume of about 419 ac-ft, and an average water depth of 11 ft. The 2015/2016 monitoring data reported during this baseline study from the Wakulla River indicate that this segment is impaired in several respects, and that the ecological structure and function of the spring run is substantially impaired compared to other spring runs. Average flows in the Wakulla River have been increasing since the 1960s. The baseline flows averaged 892 cfs compared to a period-of-record average flow of 344 cfs (an 159% increase). Dissolved oxygen concentrations in the Wakulla River were generally above 5 mg/L with the exception that nighttime summer values dipped down to about 4 mg/L due to high community respiration rates. Measured pH varies around 7.6 standard units, temperature varied between 18 and 20 °C, and specific conductance varied slightly around 329 uS.

Nitrate+nitrite nitrogen concentrations at the springs feeding the Wakulla River averaged about 0.7 mg/L since 2000, about 14 times higher than the assumed background levels of this nutrient (about 0.05 mg/L) and about two times higher than the Florida numeric springs standard of 0.35 mg/L. Measured nitrate concentrations in the lower Wakulla River measured during this baseline study averaged about 0.36 mg/L, partly as a result of natural attenuation by the aquatic ecosystem estimated in this study as 252 lbs/d.

The Wakulla River baseline study segment had low water clarity (horizontal Secchi distance about 13.5 ft) and the water was noticeably colored and turbid. Overall plant and algae cover was estimated as 80% in the shallowest areas and submerged plants were noticeably sparse in the deeper areas of the channel. The cover of filamentous algae in the shallow areas was about 23% and there was a very high load of periphytic algae on eelgrass leaves. Measured

populations of insects, snails, turtles, fish, and birds were low in this river segment, indicating poor wildlife habitat support.

Gross ecosystem primary productivity was unusually high (about 19 $g/O_2/m^2/d$), as was community respiration (about 18 $g/O_2/m^2/d$), resulting in very little observed export of useful plant matter. The observed high primary productivity in this aquatic ecosystem appears to be the result of eutrophic nitrogen levels and undesirable changes in the spring run plant communities. Human use of the Wakulla River was low during the week days when sampling was conducted.

The Wakulla River Ecosystem Baseline segment was one of the most impacted spring runs studied by the Florida Springs Institute. Water clarity is very low, indicator species of a healthy spring run such as aquatic insects and mollusks are nearly absent, and populations and diversity of fish and turtles appear to be very low. Routine bird counts upstream in the Wakulla River indicate that populations of several species have declined. On the other hand, community metabolism and photosynthetic efficiency were relatively high compared to other spring runs. On a subsidy-stress curve it appears that the existing combination of elevated nitrate nitrogen and color/turbidity in the river provide a recipe for excessive algae growth and low water clarity. In spite of the regulatory efforts and money expended to-date to restore and protect this river from harm, wildlife habitat functions appears to be seriously impaired compared to other Florida spring runs.

4.2 Wakulla Spring Report Card

The 2016 Wakulla Spring report card is presented in Figure 33 with detailed data provided in Appendix K. The quantitative data assembled for this environmental health assessment indicate that the Wakulla Spring and River system received an average grade. However, the observations of low to very low populations of insects, snails, fish, turtles, and birds in this lower river segment, indicate that the river is impaired for wildlife and food chain support. Additional data collection and analysis will be important to determine the magnitude of any benefits accrued due to the City of Tallahassee's wastewater treatment upgrades.

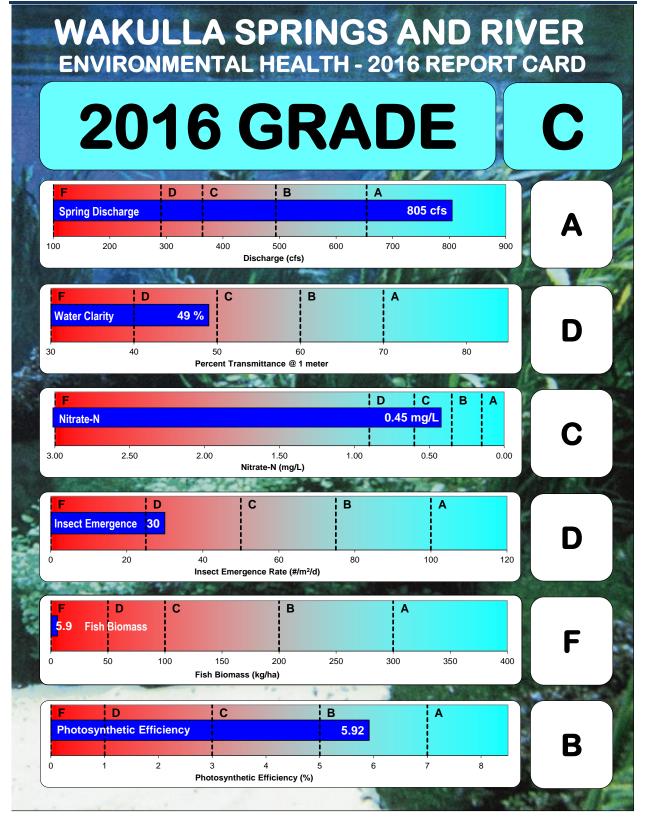


Figure 33. Wakulla Spring 2016 Report Card

Section 5.0 References

Florida Automated Weather Network (FAWN). Website: <u>http://fawn.ifas.ufl.edu/</u>

Florida Springs Institute (2014). Wakulla Spring Restoration Plan. Prepared for the Wakulla Springs Alliance and the Friends of Wakulla Springs. August 2014.

Knight, R. L. 1983. Energy Basis of Ecosystem Control at Silver Springs, Florida, pp. 161-179 In T. D. Fontaine and S. M. Bartell [eds.], Dynamics of Lotic Ecosystems. Ann Arbor Science.

Knight, R.L. 1980. Energy Basis of Control in Aquatic Ecosystems. Ph.D. Dissertation, University of Florida, Gainesville, FL. 200 pp.

LI-COR Biosciences. LI-COR Quantum Sensors for the measure of photosynthetically active radiation. Lincoln, NE. Website: http://www.licor.com

Marsh-McBirney, Inc. Flo-Mate Model 2000 portable flow meter. Frederick, MD. Website: http://www.marsh-mcbirney.com

McCree, K.J. 1972. Test of Current Definitions of Photosynthetically Active Radiation against Leaf Photosynthesis Data. Agricultural Meteorology 10:443-453.

Odum, H.T. 1957a. Trophic Structure and Productivity of Silver Springs, Florida. Ecological Monographs. Volume 27 (1): 55-112.

Odum, H.T. 1957b. Primary Production Measurements in Eleven Florida Springs and a Marine Turtle-Grass Community. Limnology and Oceanography 2:85-97.

Schneider, J.C., P.W. Larrman, and H. Gowing. 2000. Length-weight relationships, Chapter 17, In Schneider, J.C. [Ed.] Manual of Fisheries Survey Methods II: With Periodic Updates. Michigan Department of Natural Resources, Fisheries Special Report 25, Ann Arbor, MI.

Walton, W.E., P.D. Workman, and J.B. Keiper. 1999. An inexpensive collapsible pyramidal emergence trap for the assessment of wetland insect populations. Proceedings and Papers of the Sixty-Seventh Conference of the California Mosquito Control Association. 15-17.

Wetland Solutions, Inc. (WSI). 2007. Pollutant Load Reduction Goal (PLRG) Analysis for the Wekiva River and Rock Springs Run, Florida. Phase 3 Final Report. Report prepared for the St. Johns River Water Management District, Palatka, FL. 418 pp.

Wetland Solutions, Inc. (WSI). 2010. An Ecosystem-Level Study of Florida's Springs. Report prepared for the Florida Fish and Wildlife Conservation Commission, St. Johns River Water Management District, Southwest Florida Water Management District, Florida Parke Service, Florida Springs Initiative, and Three Rivers Trust, Inc. 1,458 pp.

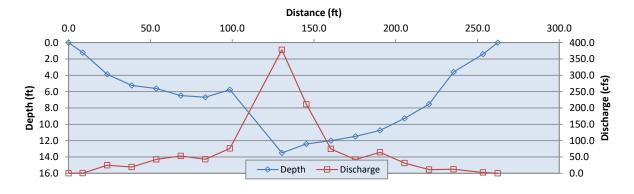
Wetzel, R.G. 2001. Limnology: Lake and River Ecosystems. 3rd Ed. Academic Press, San Diego, CA.

Zar, J.H. 1984. Biostatistical analysis. 2nd ed. Englewood Cliffs, NJ: Prentice-Hall. 130 p.

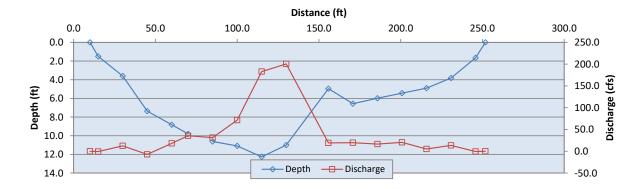
PAR Attenuation Estimates

1.					Nunu	-	-							
											k (diffuse			
											attenuation		Birgean	
					Depth						coefficient =	Percent	Percentile	
					(m)	corr					slope, m-1)	Transmittance	Absorption	
Site	Stn	Date	Time	Rep	z	Air (lo)	Water (Iz)	ln(Iz)	ln(lo/lz)	k (m-1)	k (m-1)	(1m)	(1m)	Flag
WAK	WK-1	10/19/2015	12:30	1	Air	1,129.7	1,129.7				0.554	57.49	42.51	
					0.03	1,129.7	1,057.4	6.96					air	
					0.15	1,129.7	885.4	6.79	0.244	1.599			water	
					0.30	1,129.7	841.5	6.74	0.295	0.966			ln(lo/lz)	
					0.61	1,129.7	687.4	6.53	0.497	0.815				
					0.91	1,129.7	614.0	6.42	0.610	0.667				
		10/19/2015	12.20	2	1.22	1,129.7	487.1	6.19	0.841	0.690	0.763	10.01	52.20	
WAK	WK-1	10/19/2015	12:30	2	Air 0.03	1,157.4	1,157.4	6.99			0.763	46.61	53.39	
					0.05	1,157.4 1,157.4	1,082.1 960.1	6.87	0.187	1.226			air	
					0.15	1,157.4	914.9	6.82	0.235	0.771			water In(Io/Iz)	
					0.61	1,157.4	700.4	6.55	0.502	0.824			111(10/12)	
					0.01	1,157.4	562.7	6.33	0.721	0.789				
					1.22	1,157.4	433.3	6.07	0.983	0.806				
WAK	WK-2	10/19/2015	15:20	1	Air	1,048.2	1,048.2		2.500	0.500	0.635	53.01	46.99	
	_	, ,			0.03	1,048.2	920.7	6.83				• • • • • • • •	air	
					0.15	1,048.2	866.8	6.76	0.190	1.247			water	
					0.30	1,048.2	771.3	6.65	0.307	1.006			ln(lo/lz)	
					0.61	1,048.2	625.5	6.44	0.516	0.847				
					0.91	1,048.2	512.9	6.24	0.715	0.782				
					1.22	1,048.2	443.1	6.09	0.861	0.706				
WAK	WK-2	10/19/2015	15:20	2	Air	1,043.6	1,043.6				0.598	54.97	45.03	
					0.03	1,043.6	871.6	6.77				* * * * * *	air	
					0.15	1,043.6	820.8	6.71	0.240	1.576		*****	water	
					0.30	1,043.6	747.0	6.62	0.334	1.097			In(Io/Iz)	
					0.61	1,043.6	618.1	6.43	0.524	0.859				
					0.91	1,043.6	510.0	6.23	0.716	0.783				
					1.22	1,043.6	436.6	6.08	0.871	0.715				
WAK	WK-3	10/19/2015	14:17	1	Air	1,254.7	1,254.7				0.814	44.30	55.70	
					0.03	1,254.7	1,130.7	7.03	0.400	0.000		· · · · · ·	air	
					0.15	1,254.7	1,092.5	7.00	0.138	0.908			water	
					0.30	1,254.7	971.4	6.88	0.256	0.840			ln(lo/lz)	
					0.61 0.91	1,254.7 1,254.7	741.2 591.8	6.61 6.38	0.526 0.751	0.863 0.822				
WAK	WK-3	10/19/2015	14:17	2	Air	1,068.0	1,068.0	0.38	0.751	0.822	0.517	59.62	40.38	
	WIK 5	10/15/2015	14.17	-	0.03	1,068.0	1,088.2	6.99			0.517	****	air	1
					0.15	1,068.0	1,010.0	6.92	0.056	0.366			water	
					0.30	1,068.0	853.2	6.75	0.225	0.737			In(Io/Iz)	
					0.61	1,068.0	751.6	6.62	0.351	0.576				
					0.91	1,068.0	664.4	6.50	0.475	0.519				
WAK	WK-3	10/30/2015	12:42	1	Air	1,188.0	1,188.0				0.766	46.50	53.50	
					0.03	1,230.9	1,015.0	6.92					air	
					0.15	1,230.9	795.6	6.68	0.436	2.864			water	
					0.30	1,227.7	689.1	6.54	0.578	1.895			ln(lo/lz)	
					0.61	1,226.6	613.5	6.42	0.693	1.137				
					0.91	1,211.6	421.2	6.04	1.057	1.156				
WAK	WK-3	10/30/2015	12:42	2	Air	1,575.0	1,575.0				0.995	36.96	63.04	
					0.03	1,539.3	970.7	6.88					air	
					0.15	1,499.9	924.4	6.83	0.484	3.176			water	
					0.30	1,510.1	778.3	6.66	0.663	2.175			In(Io/Iz)	
					0.61	1,489.7	594.4	6.39	0.919	1.507				
	WK-2	3/7/2016	12.06	1	0.91	1,398.0	396.4 1,368.1	5.98	1.260	1.378	0.770	46.29	53.71	-
WAR	VVR-Z	5/7/2010	13:06	1	Air 0.03	1,368.1 1,368.1		7.22			0.770	40.29		
					0.03	1,368.1	1,362.1 1,177.6	7.22	0.150	0.984			air water	
					0.15	1,368.1	1,177.6	6.91	0.130	1.014			water In(Io/Iz)	
					0.50	1,368.1	746.2	6.61	0.606	0.994			11(10/12)	
					0.01	1,368.1	625.0	6.44	0.783	0.857				
					1.22	1,368.1	513.9	6.24	0.979	0.803				
					1.22	1,500.1	513.5	0.24	0.575	0.000				4

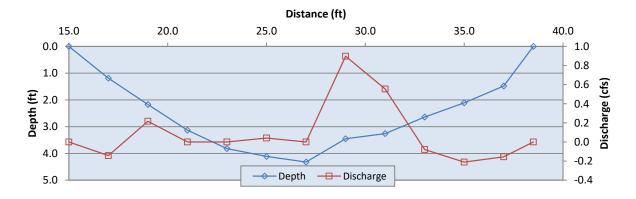
						-								
											k (diffuse			
											attenuation		Birgean	
					Depth						coefficient =	Percent	Percentile	
					(m)	corr					slope, m-1)	Transmittance	Absorption	
Site	Stn	Date	Time	Rep	z	Air (lo)	Water (Iz)	ln(Iz)	ln(lo/lz)	k (m-1)	k (m-1)	(1m)	(1m)	Flag
WAK	WK-2	3/7/2016	13:06	2	Air	1,339.5	1,339.5				0.746	47.45	52.55	
					0.03	1,339.5	1,165.5	7.06					air	
					0.15	1,339.5	1,074.4	6.98	0.221	1.447			water	
					0.30	1,339.5	971.5	6.88	0.321	1.054			ln(lo/lz)	
					0.61	1,339.5	767.4	6.64	0.557	0.914				
					0.91	1,339.5	602.9	6.40	0.798	0.873				
					1.22	1,339.5	491.0	6.20	1.004	0.823				
WAK	WK-1	3/7/2016	14:01	1	Air	1,371.1	1,371.1				0.797	45.09	54.91	
					0.03	1,371.1	1,209.8	7.10					air	
					0.15	1,371.1	1,070.4	6.98	0.248	1.625			water	
					0.30	1,371.1	952.4	6.86	0.364	1.195			In(Io/Iz)	
					0.61	1,371.1	760.1	6.63	0.590	0.968				
					0.91	1,371.1	536.9	6.29	0.938	1.025				
					1.22	1,371.1	477.8	6.17	1.054	0.865				
WAK	WK-1	3/7/2016	14:01	2	Air	1,330.6	1,330.6	7.07			0.738	47.82	52.18	
					0.03	1,330.6	1,176.4	7.07	0.252	1.000		++	air	
					0.15	1,330.6	1,034.0	6.94	0.252	1.655 1.254			water	
					0.30 0.61	1,330.6	908.0	6.81 6.61	0.382 0.585	0.960			ln(lo/lz)	
						1,330.6	741.0			0.960				
					0.91	1,330.6 1,330.6	559.1 477.8	6.33 6.17	0.867 1.024	0.948				
WAK	WK-3	3/7/2016	14:39	1	Air	1,662.9	1,662.9	7.42	0.000	0.640	1.446	23.55	76.45	х
WAR	VVN-5	5/7/2010	14.59	T	0.03	1,662.9	1,002.9	7.06	0.354		1.440	23.55	70.45 air	<u> </u>
					0.03	1,662.9	1,016.6	6.92	0.492	3.229		· · · · · · · · · · · · · · · · · · ·	water	
					0.13	1,662.9	865.5	6.76	0.432	2.142			In(Io/Iz)	
					0.61	1,662.9	685.0	6.53	0.887	1.455			111(10/12)	
					0.91	1,662.9	391.8	5.97	1.446	1.581				
					1.22	1,662.9	212.7	5.36	2.056	1.687				
WAK	WK-3	3/7/2016	14:39	2	Air	1,228.7	1,228.7	7.11	0.000	1.007	0.612	54.24	45.76	
		5, 7, 2010	2	-	0.03	1,228.7	1,137.7	7.04	0.000		0.012	* * * * * * * *	air	
					0.15	1,228.7	994.5	6.90	0.211	1.388			water	
					0.30	1,228.7	865.5	6.76	0.350	1.150			In(Io/Iz)	
					0.61	1,228.7	656.2	6.49	0.627	1.029			, -,,	
					0.91	1,228.7	536.9	6.29	0.828	0.905				
					1.22	1,228.7	537.6	6.29	0.827	0.678				
						,,								



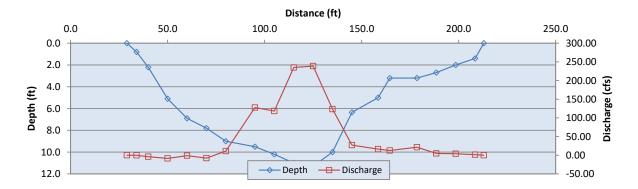
Stream Discharge Measurements



Stn No.:	Wakulla WAK-3 10/20/2015		art Time: End Time:			taff (ft) Start: Staff (ft) End:			Field Team Access:	: FSI Boat
	Distance from Initial Point	Segment Width	Total Depth		Velocity (ft/s)		Segment Area	2	Discharge	
	(ft.)	(ft.)	(ft.)	0.2 x depth	0.6 x depth	0.8 x depth	(ft ²)	(ft ³ /s)	(m³/d)	(MGD)
Start	0.0	4.3	0.0		0.00		0	0.0	0	0.0
	8.6	11.8	1.2		0.03		14	0.4	1,057	0.3
	23.6	15.0	3.9	0.52		0.33	58	24.7	60,516	16.0
	38.6	15.0	5.2	0.37		0.12	79	19.3	47,114	12.4
	53.6	15.0	5.6	0.53		0.48	84	42.6	104,154	27.5
	68.6	15.0	6.5	0.74		0.35	97	53.0	129,605	34.2
	83.6	15.0	6.7	0.64		0.22	100	43.1	105,413	27.8
	98.6	21.7	5.8	0.80		0.42	125	76.2	186,539	49.3
Piling	112.8									
	116.2									
	130.4	21.7	13.5	1.53		1.05	293	377.9	924,575	244.3
	145.4	15.0	12.4	1.25		1.02	186	211.1	516,497	136.4
	160.4	15.0	12.0	0.49		0.34	180	74.7	182,759	48.3
	175.4	15.0	11.5	0.33		0.16	172	42.2	103,219	27.3
	190.4	15.0	10.7	0.52		0.28	161	64.4	157,657	41.6
	205.4	15.0	9.3	0.27		0.18	139	31.3	76,627	20.2
	220.4	15.0	7.5	0.16		0.04	113	11.3	27,634	7.3
	235.4	16.5	3.6	0.09		0.33	59	12.5	30,519	8.1
	253.4	13.5	1.4		0.13		19	2.5	6,011	1.6
End	262.4	4.5	0.0		0.00		0	0.0	0	0.0
		259	6.5	0.59	0.04	0.38	1,881	1,087	2,659,895	703



Stn No.	: Wakulla : WAK-3 : 10/29/2015	Start Time: 13:25 End Time: 14:34			Staff (ft) Start: Staff (ft) End:				Field Team Access:	: FSI Boat
	Distance from Initial Point	Segment Width	Total Depth		Velocity (ft/s)		Segment Area		Discharge	
	(ft.)	(ft.)	(ft.)	0.2 x depth	0.6 x depth	0.8 x depth	(ft ²)	(ft ³ /s)	(m³/d)	(MGD)
Start	10.0	2.5	0.0		0.00		0.00	0.0	0	0.0
	15.0	10.0	1.5		-0.05		15.00	-0.8	-1,835	-0.5
	30.0	15.0	3.6	0.35		0.11	54.00	12.4	30,386	8.0
	45.0	15.0	7.4	-0.07		-0.06	110.40	-7.2	-17,557	-4.6
	60.0	12.5	8.8	0.14		0.19	110.25	18.2	44,506	11.8
	70.0	10.0	9.8	0.40		0.33	98.00	35.8	87,514	23.1
Piling	75.0 78.8									
	85.0	13.7	10.6	0.31		0.12	145.49	31.3	76,532	20.2
	100.0	15.0	11.1	0.54		0.32	166.35	71.5	175,005	46.2
	115.0	15.0	12.3	1.09		0.90	183.90	183.0	447,676	118.3
	130.0	18.5	11.0	1.19		0.78	203.50	200.4	490,410	129.6
Piling	141.0 144.8									
	155.8	18.5	5.0	0.29		0.13	91.76	19.3	47,145	12.5
	170.8	15.0	6.6	0.25		0.15	98.55	19.7	48,222	12.7
	185.8	15.0	6.0	0.22		0.15	89.70	16.6	40,600	10.7
	200.8	15.0	5.4	0.28		0.22	81.60	20.4	49,910	13.2
	215.8	15.0	4.9	0.12		0.02	73.50	5.1	12,588	3.3
	230.8	15.0	3.8	0.42		0.05	57.30	13.5	32,944	8.7
	245.8	10.5	1.7		-0.03		17.33	-0.5	-1,272	-0.3
End	251.8	3.0	0.0		0.00		0.00	0.0	0	0.0
		234	6.1	0.40	-0.02	0.24	1,597	639	1,562,774	413

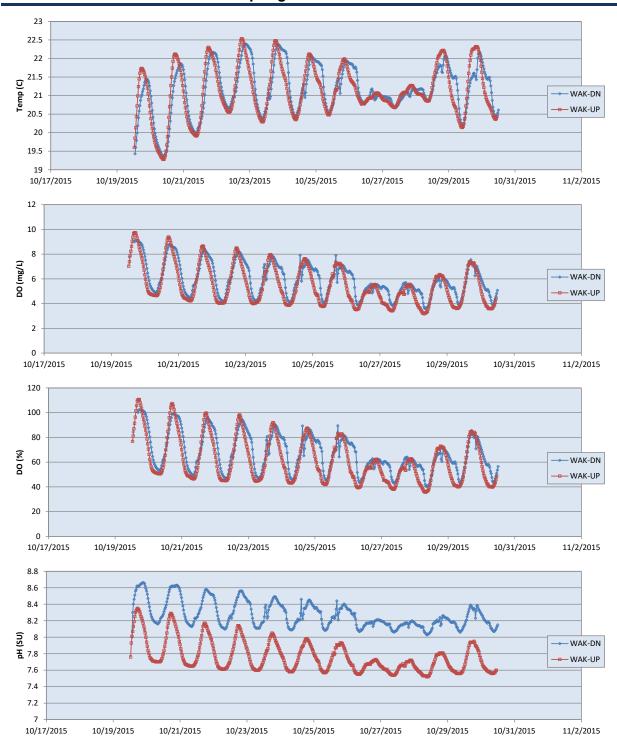


	Distance from	Segment	Total				Segment			
	Initial Point	Width	Depth		Velocity (ft/s)	Area		Discharge	
	(ft.)	(ft.)	(ft.)	0.2 x depth	0.6 x depth	0.8 x depth	(ft ²)	(ft ³ /s)	(m³/d)	(MGD)
Start	15.0	1.0	0.0		0.00		0.00	0.0	0	0.0
	17.0	2.0	1.2		-0.06		2.38	-0.1	-349	-0.1
	19.0	2.0	2.2		0.05		4.34	0.2	531	0.1
	21.0	2.0	3.1	-0.07		0.07	6.26	0.0	0	0.0
	23.0	2.0	3.8	-0.06		0.06	7.64	0.0	0	0.0
	25.0	2.0	4.1	-0.01		0.02	8.22	0.04	101	0.03
	27.0	2.0	4.3	-0.08		0.08	8.64	0.00	0	0.00
	29.0	2.0	3.5	0.16		0.10	6.90	0.90	2,195	0.58
	31.0	2.0	3.3	0.10		0.07	6.52	0.55	1,356	0.36
	33.0	2.0	2.6	-0.04		0.01	5.28	-0.08	-194	-0.05
	35.0	2.0	2.1		-0.05		4.22	-0.21	-516	-0.14
	37.0	1.8	1.5		-0.06		2.59	-0.16	-380	-0.10
End	38.5	0.8	0.00		0.00		0.00	0.00	0	0.00
		23.5	2.4	0.00	-0.03	0.06	62.99	1.12	2,742	0.72

Station: Wakulla Stn No.: WAK-3 Date: 3/8/2016		Start Time: 12:00 End Time: 12:30			Staff (ft) Start: 0.00 Staff (ft) End: 0.00				Field Team: Access:	FSI Boat
	Distance from Initial Point	Segment Width	Total Depth		Velocity (ft/s)		Segment Area		Discharge	
	(ft.)	(ft.)	(ft.)	0.2 x depth	0.6 x depth	0.8 x depth	(ft ²)	(ft ³ /s)	(m³/d)	(MGD)
Start	29.0	2.5	0.0		0.00		0.00	0.00	0	0.00
	34.0	5.5	0.8		-0.04		4.40	-0.18	-431	-0.11
	40.0	8.0	2.2		-0.22		17.60	-3.87	-9,473	-2.50
	50.0	10.0	5.1	-0.23	-0.13	-0.18	51.00	-8.54	-20,900	-5.52
	60.0	10.0	6.9	0.12	-0.03	-0.12	69.00	-1.04	-2,532	-0.67
	70.0	10.0	7.8	0.02	-0.20	-0.02	78.00	-7.80	-19,083	-5.04
	80.0	7.5	9.0	-0.03	0.25	0.19	67.50	11.1	27,249	7.20
Piling	82.5 86.0									
	95.0	14.0	9.5	0.73	1.23	0.65	133.00	128	312,379	82.5
	105.0	10.0	10.2	0.61	1.47	1.09	102.00	118	289,479	76.5
	115.0	10.0	11.0	1.74	2.16	2.48	110.00	235	574,578	151.8
	125.0	10.0	11.3	1.91	2.46	1.62	113.00	239	584,028	154.3
	135.0	10.0	10.0	1.62	1.11	1.10	100.00	124	302,152	79.8
	145.0	7.5	6.4	0.75	0.63	0.26	47.63	27.0	66,124	17.5
Piling	147.5 151.0									
	158.5	10.5	5.0	0.35	0.30	0.30	52.50	16.41	40,139	10.60
	164.5	10.0	3.2	0.24	0.51	0.33	32.00	12.72	31,120	8.22
	178.5	12.0	3.2	0.59	0.55	0.55	38.40	21.50	52,611	13.90
	188.5	10.0	2.7	0.16	0.17	0.23	27.00	4.9	12,056	3.18
	198.5	10.0	2.0		0.20		20.00	4.0	9,786	2.59
	208.5	7.3	1.4		0.15		10.15	1.5	3,725	0.98
End	213.0	2.3	0.0		0.00		0.00	0.00	0	0.00
		177	5.4	0.61	0.53	0.61	1,073	921	2,253,008	595

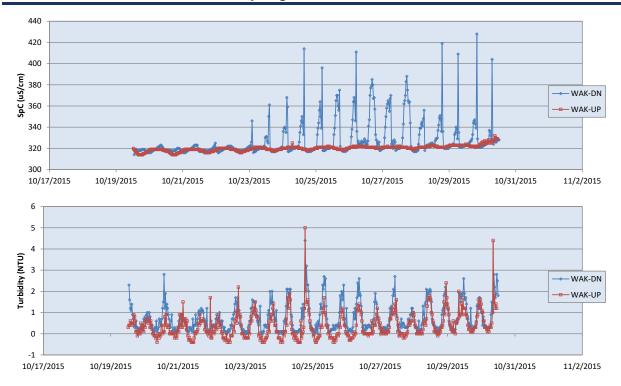
Water Quality Results

						14/1/ 2
PARAMETER GROUP	PARAMETER	UNITS	Date	WK-1	WK-2	WK-3
DISSOLVED OXYGEN	DO	%	10/5/15	57.1	52.3	57.4
			10/20/15	62.2	62.9	65.9
			10/30/15	47.8	48.2	50.8
			3/7/16	90.0	74.6	85.0
			3/17/16	58.4	56.8	60.2
	DO	mg/L	10/5/15	5.13	4.70	5.17
			10/20/15	5.72	5.80	6.07
			10/30/15	4.32	4.35	4.58
			3/7/16	8.13	6.40	8.10
			3/17/16	5.23	5.12	5.41
NITROGEN	NH4-N	mg/L	10/20/15	0.060	0.020	0.010
			10/30/15	0.020	0.020	0.010
			3/7/16	0.010	0.01 U	0.020
			3/22/16	0.010	0.020	0.010
	NOx-N	mg/L	10/20/15	0.300	0.300	0.31 I
			10/30/15	0.290	0.280	0.280
			3/7/16	0.400	0.380	0.360
			3/22/16	0.590	0.400	0.370
	OrgN	mg/L	10/20/15	-0.010	0.050	0.053
			10/30/15	0.043	0.080	0.200
			3/7/16	0.100	0.100	0.055
			3/22/16	0.040	0.030	0.040
	TKN	mg/L	10/20/15	0.05 U	0.07 I	0.063 I
			10/30/15	0.063 I	0.100	0.210
			3/7/16	0.110	0.110	0.075 I
			3/22/16	0.05 U	0.05 U	0.05 U
	TN	mg/L	10/20/15	0.350	0.370	0.373
			10/30/15	0.353	0.380	0.490
			3/7/16	0.510	0.490	0.435
			3/22/16	0.640	0.450	0.420
PHYSICAL	рН	SU	10/5/15	7.19 J	6.95 J	7.12 J
			10/20/15	7.86	7.82	7.86
			10/30/15	7.83	7.81	7.83
			3/7/16	7.95	7.78	7.85
			3/17/16	7.29	7.50	7.57
	Secchi	m	10/5/15		3.20	
			10/19/15	5.18		3.96
			10/29/15		3.66	
			3/7/16		2.14	
			3/17/16		3.35	

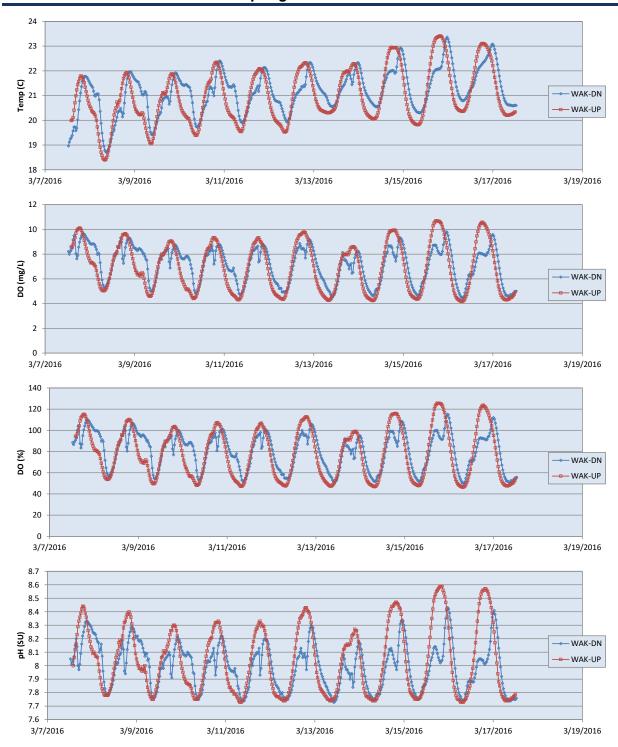


PARAMETER GROUP	PARAMETER	UNITS	Date	WK-1	WK-2	WK-3
	Secchi-H	m	10/5/15	3.96		
			10/19/15		4.27	
			10/29/15	3.96		5.18
			10/30/15	4.42	4.88	3.66
			3/7/16	5.18		5.18
	SpCond	umhos/cm	10/5/15	312	313	314
			10/20/15	309	309	310
			10/30/15	314	315	316
			3/7/16	324	325	400
			3/17/16	324	325	378
	Stage	ft	10/5/15			3.18
			10/29/15			1.80
			10/30/15			3.55
			3/7/16			3.66
			3/8/16			4.42
			3/17/16			3.37
	Turb	NTU	10/5/15	0.300	0.300	0.300
TEMPERATURE	Wtr Temp	С	10/5/15	20.6	20.5	20.6
			10/20/15	14.2	14.2	14.3
			10/30/15	20.2	20.2	20.3
			3/7/16	20.2	19.0	19.0
			3/17/16	20.5	20.4	20.5

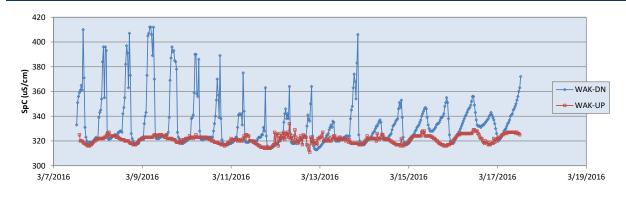
PARAMETER GROUP	PARAMETER	UNITS	Date	WAK- SS#1	WAK- SS#2	WAK- Stream
DISSOLVED OXYGEN	DO	%	10/30/15	8.10	46.5	61.0
			3/7/16	9.17	70.9	
	DO	mg/L	10/30/15	0.720	4.16	5.47
			3/7/16	0.810	7.31	
PHYSICAL	рН	SU	10/30/15	7.36	7.43	7.55
			3/7/16	7.22	7.74	
	SpCond	umhos/cm	10/30/15	4,420	1,305	1,927
			3/7/16	3,713	344	
TEMPERATURE	Wtr Temp	С	10/30/15	20.2	20.5	20.4
			3/7/16	19.8	19.2	



Wakulla Springs Baseline Assessment



Wakulla Springs Baseline Assessment



Wakulla Springs Baseline Assessment

Wakulla Springs Baseline Assessment

Aquatic Vegetation Summary

Wakulla Spring

Summary of Aquatic Vegetation - Line Intercept Method

Site	Transect	Date	Distance (m)
------	----------	------	--------------

BA-WAK T-1 10/19/2015 36.10

					Linea	r Distan	ce (m)				Co	ver	Freq	lency	Importance
SPECIES	COMMON	Α	В	С	D	E	F	G	н	Total	Percent	Relative	Absolute	Relative	Value
Algae	Algae	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.72	2.00	5.41	1.00	25.00	15.20
Cabomba caroliniana	Fanwort	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	5.42	15.00	40.54	1.00	25.00	32.77
Najas guadalupensis	Southern naiad	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	3.61	10.00	27.03	1.00	25.00	26.01
Vallisneria americana	Tape grass	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	3.61	10.00	27.03	1.00	25.00	26.01
Total		1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	13.36	37.00	100.00	4.00	100.00	100.00

Site	Transect	Date	Dis

BA-WAK T-2

 Date
 Distance (m)

 10/19/2015
 47.70

					Linea	r Distan	ice (m)				Co	ver	Freq	uency	Importance
SPECIES	COMMON	Α	В	С	D	E	F	G	Н	Total	Percent	Relative	Absolute	Relative	Value
Algae	Algae	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	9.54	20.00	95.24	1.00	50.00	72.62
Vallisneria americana	Tape grass	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.48	1.00	4.76	1.00	50.00	27.38
Total		1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	10.02	21.00	100.00	2.00	100.00	100.00

Site Transect Date Distance (m)

BA-WAK T-3

10/19/2015 41.60

			Linear Distance (m)							Co	ver	Freq	uency	Importance	
SPECIES	COMMON	Α	В	С	D	E	F	G	Н	Total	Percent	Relative	Absolute	Relative	Value
Algae	Algae	2.6	2.60	2.60	2.60	2.60	2.60	2.60	2.60	20.80	50.00	62.50	1.00	50.00	56.25
Cabomba caroliniana	Fanwort	1.5	1.56	1.56	1.56	1.56	1.56	1.56	1.56	12.48	30.00	37.50	1.00	50.00	43.75
Total		4.1	4.16	4.16	4.16	4.16	4.16	4.16	4.16	33.28	80.00	100.00	2.00	100.00	100.00

Wakulla Spring

Summary of Aquatic Vegetation - Line Intercept Method

51.60

Site	Transect	Date	Distance (m)
------	----------	------	--------------

BA-WAK T-4 10/19/2015

			Linear Distance (m)							Co	ver	Freq	uency	Importance		
SPECIES	COMMON	A		В	С	D	Е	F	G	Н	Total	Percent	Relative	Absolute	Relative	Value
Cabomba caroliniana	Fanwort	5.:	.6 5	5.16	5.16	5.16	5.16	5.16	5.16	5.16	41.28	80.00	100.00	1.00	100.00	100.00
Total		5.:	.6 5	5.16	5.16	5.16	5.16	5.16	5.16	5.16	41.28	80.00	100.00	1.00	100.00	100.00

Site Transect Date Distance (m)

BA-WAK T-5 10/19/2015

10/19/2015	46.90

			Linear Distance (m)					Co	ver	Freq	Importance				
SPECIES	COMMON	Α	В	С	D	E	F	G	Н	Total	Percent	Relative	Absolute	Relative	Value
Algae	Algae	2.46	2.46	2.46	2.46	2.46	2.46	2.46	2.46	19.70	42.00	54.55	1.00	33.33	43.94
Cabomba caroliniana	Fanwort	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	15.01	32.00	41.56	1.00	33.33	37.45
Vallisneria americana	Tape grass	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	1.41	3.00	3.90	1.00	33.33	18.61
Total		4.51	4.51	4.51	4.51	4.51	4.51	4.51	4.51	36.11	77.00	100.00	3.00	100.00	100.00

Site Transect Date Distance (m)

BA-WAK T-6

10/19/2015 51.40

					Linea	r Distan	ce (m)				Co	ver	Frequ	uency	Importance
SPECIES	COMMON	Α	В	С	D	Е	F	G	Н	Total	Percent	Relative	Absolute	Relative	Value
Algae	Algae	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14	41.12	80.00	84.21	1.00	50.00	67.11
Cabomba caroliniana	Fanwort	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	7.71	15.00	15.79	1.00	50.00	32.89
Total		6.10	6.10	6.10	6.10	6.10	6.10	6.10	6.10	48.83	95.00	100.00	2.00	100.00	100.00

Wakulla Spring

Summary of Aquatic Vegetation - Line Intercept Method

Site	Transect	Date	Distance (m)
------	----------	------	--------------

BA-WAK T-7 10/19/2015

			Linear Distance (m)								Co	ver	Frequ	uency	Importance	
SPECIES	COMMON	Α		В	С	D	E	F	G	Н	Total	Percent	Relative	Absolute	Relative	Value
Algae	Algae	0.	59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	4.70	5.00	8.33	1.00	50.00	29.17
Vallisneria americana	Tape grass	6.	46	6.46	6.46	6.46	6.46	6.46	6.46	6.46	51.70	55.00	91.67	1.00	50.00	70.83
Total		7.	05	7.05	7.05	7.05	7.05	7.05	7.05	7.05	56.40	60.00	100.00	2.00	100.00	100.00

Site Transect Date Distance (m)

BA-WAK T-8

102.60 10/19/2015

94.00

		Linear Distance (m)					Cover		Frequency		Importance				
SPECIES	COMMON	Α	В	С	D	Е	F	G	н	Total	Percent	Relative	Absolute	Relative	Value
Algae	Algae	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	8.21	8.00	8.16	1.00	33.33	20.75
Najas guadalupensis	Southern naiad	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	15.39	15.00	15.31	1.00	33.33	24.32
Vallisneria americana	Tape grass	9.62	9.62	9.62	9.62	9.62	9.62	9.62	9.62	76.95	75.00	76.53	1.00	33.33	54.93
Total		12.57	12.57	12.57	12.57	12.57	12.57	12.57	12.57	100.55	98.00	100.00	3.00	100.00	100.00

Site Transect Date Distance (m) BA-WAK

T-9 10/19/2015 91.50

				Linea	r Distan	ce (m)				Cover		Frequency		Importance	
SPECIES	COMMON	Α	В	С	D	E	F	G	н	Total	Percent	Relative	Absolute	Relative	Value
Algae	Algae	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	22.88	25.00	20.83	1.00	25.00	22.92
Cabomba caroliniana	Fanwort	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	13.73	15.00	12.50	1.00	25.00	18.75
Najas guadalupensis	Southern naiad	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	4.58	5.00	4.17	1.00	25.00	14.58
Vallisneria americana	Tape grass	8.58	8.58	8.58	8.58	8.58	8.58	8.58	8.58	68.63	75.00	62.50	1.00	25.00	43.75
Total		13.73	13.73	13.73	13.73	13.73	13.73	13.73	13.73	109.80	120.00	100.00	4.00	100.00	100.00

Bird Survey Data

	Wakulla River Bir												
Species	10-21-15	10-22-15	3-17-16	High Ct									
Wood Duck		8	8	8									
Gadwall	1			1									
Redhead	1			1									
Bufflehead			3	3									
Pied-billed Grebe	12	15	7	15									
Double-crested Cormorant*	4	306	44	306									
Anhinga	9	10	4	10									
Great Blue Heron		3	2	3									
Great Egret	5	9	4	9									
Little Blue Heron	1			1									
Tricolored Heron			2	2									
White Ibis	17	12		17									
Black Vulture	2	5	8	8									
Turkey Vulture	7	8	31	31									
Osprey		2	3	3									
Bald Eagle			1										
Sharp-shinned Hawk	1	3	1	3									
Red-shouldered Hawk	10	4	4	10									
Common Gallinule		4	4	4									
American Coot	10	5		10									
Ring-billed Gull			2	2									
Belted Kingfisher	6	5	2	6									
Chimney Swift		1		1									
Red-bellied Woodpecker	7	9	12	12									
Red-headed Woodpecker			2	2									
Downy Woodpecker	1		1	1									
Northern Flicker	9	11	2	11									
Pileated Woodpecker	11	8	7	11									
Eastern Phoebe	8	14		14									
Blue-headed Vireo			6	6									
Red-eyed Vireo			1	1									
White-eyed Vireo	1	3	2	3									
Blue Jay	8	3	2	8									
American Crow	6		1	6									
Barn Swallow			4	4									
Tree Swallow			6	6									
Carolina Chickadee	1	1	9	9									
Tufted Titmouse	5	5	19	19									
Carolina Wren	5	3	15	15									
Blue-gray Gnatcatcher		1	10	10									
Ruby-crowned Kinglet			2	2									
American Robin	2			2									
Gray Catbird	11	8		11									
Northern Mockingbird	3	1		3									
Brown Thrasher	1			1									
Brown-headed Cowbird	-		1	1									
Northern Waterthrush	1		-	1									
Northern Parula			41	41									
fellow-throated Warbler			15	15									
Pine Warbler			15	15									
fellow-rumped Warbler			2	2									
Black-and-white Warbler	2		1	2									
Common Yellowthroat	3	2	22	22									
		2											
Northern Cardinal	15	9	17	17									
Red-winged Blackbird		6	55	55									
Common Grackle		4	7	7									
Boat-tailed Grackle American Goldfinch		2	1 37	2									

* = Double-Crested Cormorant consists of about 300 fly-overs and 6 within the river

Fish Counts

Location	Date	Family	Scientific Name	Common Name	Total	Density (#/ha)	Biomass (kg/ha)
Segment-1	10/20/15	Centrarchidae	Lepomis sp.	Sunfish sp.	7	19.3	0.510
			Micropterus salmoides	Largemouth Bass	1	2.76	0.042
		Cyprinidae	Notropis sp.	Minnows	135	373	0.615
Segment-2	10/20/15	Centrarchidae	Lepomis sp.	Sunfish sp.	3	6.49	0.085
		Cyprinidae	Notropis sp.	Minnows	285	617	1.02
		Mugilidae	Mugil cephalus	Striped mullet	5	10.8	8.47

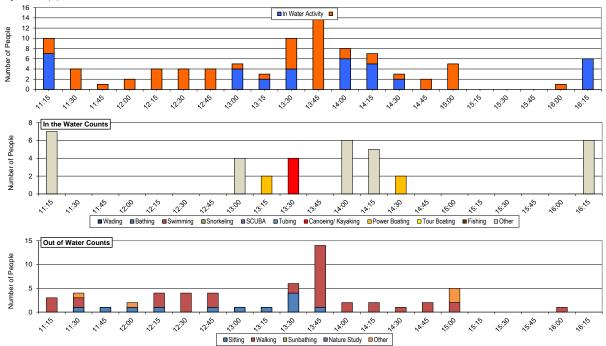
Human Use Surveys

		Peopl	e-Hrs	# Pe	ople	# Peo	ple/ha
	Activity	10/19/15	10/28/15	10/19/15	10/28/15	10/19/15	10/28/15
	Wading	0.0	0.0	0.0	0.0	0.00	0.00
	Bathing	0.0	0.0	0.0	0.0	0.00	0.00
	Swimming	0.0	0.0	0.0	0.0	0.00	0.00
	Snorkeling	0.0	0.0	0.0	0.0	0.00	0.00
	SCUBA	0.0	0.0	0.0	0.0	0.00	0.00
ter	Tubing	0.0	0.0	0.0	0.0	0.00	0.00
In-Water	Canading/Kayaking						
Ļ	Canoeing/ Kayaking	1.0	10.0	0.2	2.7	0.12	1.65
	Power Boating	1.0	0.8	0.2	0.2	0.12	0.12
	Tour Boating	0.0	0.0	0.0	0.0	0.00	0.00
	Fishing	0.0	0.0	0.0	0.0	0.00	0.00
	Other	7.0	0.0	1.4	0.0	0.86	0.00
	Total	9.0	10.8	1.8	2.9	1.1	1.8
	Sitting	3.0	1.0	0.6	0.3	0.37	0.16
ater	Walking	10.0	0.8	2.0	0.2	1.24	0.12
-W	Sunbathing	0.0	0.0	0.0	0.0	0.00	0.00
-of-	Nature Study	0.0	1.8	0.0	0.5	0.00	0.29
Out-of-Water	Other	1.3	0.3	0.3	0.1	0.15	0.04
	Total	14.3	3.8	2.9	1.0	1.8	0.6
	Total	23.3	14.5	4.7	3.9	2.9	2.4

Wakulla River Human Use Survey – October 2015

Note(s):

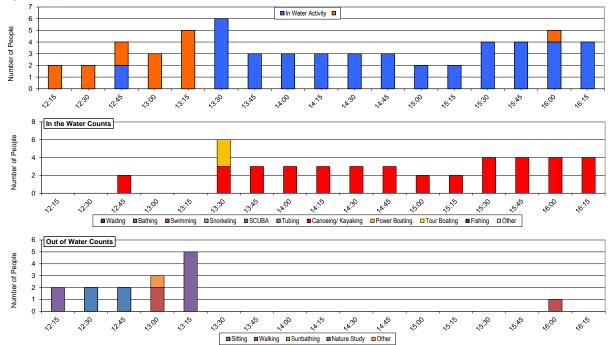
Hours of Observations:	5.0	3.8
Survey Area (ac):	4.0	



Site	Wakulla F	River @ Bo	oat Ramp US	98							Date	10/19/2015			Survey Perio	d	11:15	16:15
	1							Nur	nbers of	People								
						n Water /	Activity								Out of Water	Activity		
	-						Canoeing/	Power	Tour							Nature		
Time	Wading	Bathing	Swimming	Snorkeling	SCUBA	Tubing	Kayaking	Boating	Boating	Fishing	Other	Total	Sitting	Walking	Sunbathing	Study	Other	Total
11:15											7	7		3				3
11:30												0	1	2			1	4
11:45												0	1					1
12:00												0	1				1	2
12:15												0	1	3				4
12:30												0		4				4
12:45												0	1	3				4
13:00											4	4	1					1
13:15								2				2	1					1
13:30							4					4	4	2				6
13:45												0	1	13				14
14:00											6	6		2				2
14:15											5	5		2				2
14:30								2				2		1				1
14:45												0		2				2
15:00												0		2			3	5
15:15												0						0
15:30												0						0
15:45												0						0
16:00					1							0		1				1
16:15					1						6	6						0
Total	0	0	0	0	0	0	4	4	0	0	28	36	12	40	0	0	5	57
Person-Hrs	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	7.00	9.00	3.00	10.00	0.00	0.00	1.25	14.25
Percentage	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	11.1%	11.1%	0.0%	0.0%	77.8%	100.0%	21.1%	70.2%	0.0%	0.0%	8.8%	100.0%

 Otole(s):
 Otole (s):

 'Other' In Water Activity = Nature Study
 'Other' Out of Water Activity = Fishing, Sleeping in car, and Wakulla County Sheriff performing maintenance

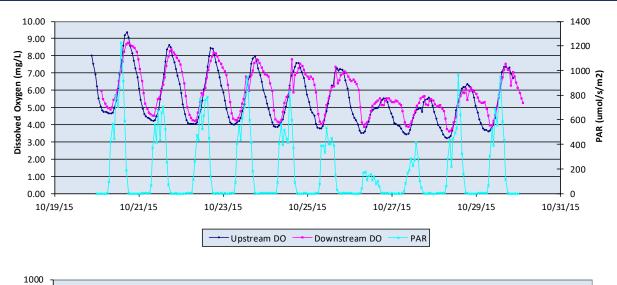


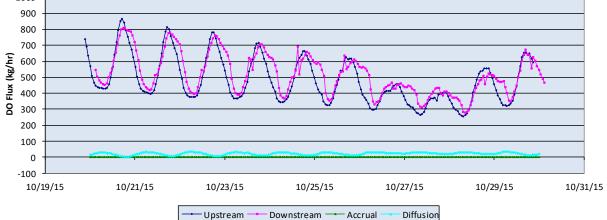
Site	Wakulla F	River @ Bo	oat Ramp US	98							Date	10/28/2015			Survey Perio	d	12:15	16:00
								Nu	mbers of I	People								
						n Water A	Activity								Out of Water	Activity		
							Canoeing/	Power	Tour							Nature		
Time	Wading	Bathing	Swimming	Snorkeling	SCUBA	Tubing	Kayaking	Boating	Boating	Fishing	Other	Total	Sitting	Walking	Sunbathing	Study	Other	Total
12:15												0				2		2
12:30												0	2					2
12:45							2					2	2					2
13:00												0		2			1	3
13:15												0				5		5
13:30							3	3				6						0
13:45							3					3						0
14:00							3					3						0
14:15							3					3						0
14:30							3					3						0
14:45							3					3						0
15:00							2					2						0
15:15							2					2						0
15:30							4					4						0
15:45							4					4						0
16:00							4					4		1				1
16:15							4					4						0
Total	0	0	0	0	0	0	40	3	0	0	0	43	4	3	0	7	1	15
Person-Hrs		0.00	0.00	0.00	0.00	0.00	10.00	0.75	0.00	0.00	0.00	10.75	1.00	0.75	0.00	1.75	0.25	3.75
Percentage	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	93.0%	7.0%	0.0%	0.0%	0.0%	100.0%	26.7%	20.0%	0.0%	46.7%	6.7%	100.0%

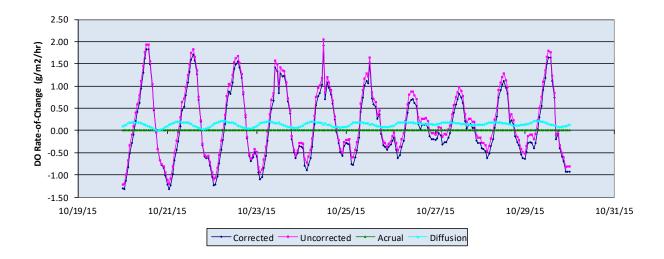
Percentage Note(s): 'Other' In Water Activity = Nature Study 'Other' Out of Water Activity = Sitting in car

Station Description	Date	Time	Activity	Number of People	Notes
WK-2	10/29/2015	12:37	Paddleboard	2	
Near Insect trap #5	10/30/2015	10:08	Kayak	7	
Near Insect trap #5	10/30/2015	10:08	Powerboat	10	
Near Insect trap #1	10/30/2015	10:10	Paddleboard	2	
Near BM Staff	3/17/2016	11:53	Canoe	7	
Near BM Staff	3/17/2016	11:53	Fishing Boat	1	90 Hp
WK-3	3/17/2016	13:24	Kayak	1	Fishing
	3/17/2016		Kayak	7	

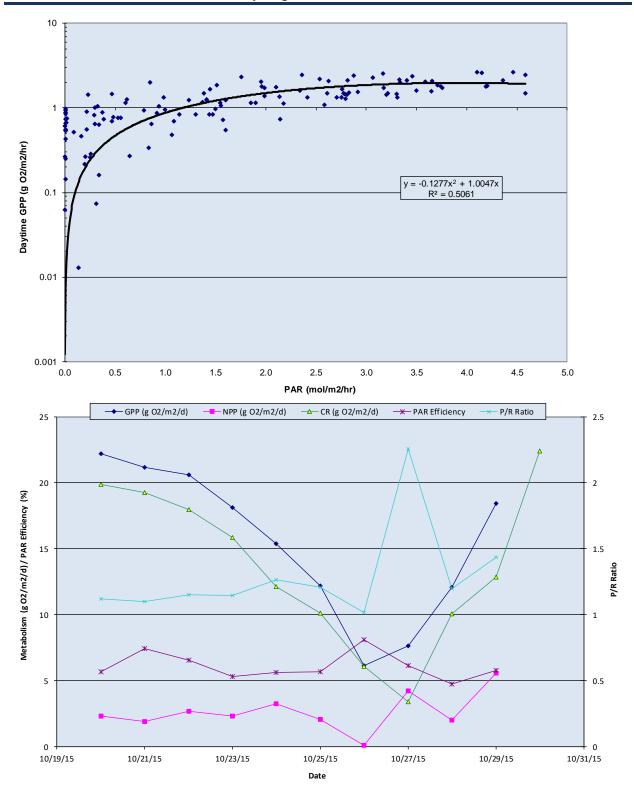
	-				
	3/17/2016		Dock	2	Standing
	3/17/2016		Powerboating	2	
Near Bridge	3/7/2016	11:37	Fishing	4	
Near Bridge	3/7/2016	11:37	Powerboat	4	40Hp
WP 495	3/7/2016	12:34	Kayak	2	
WP 494	3/7/2016	13:00	Kayak	4	
WP 487	3/7/2016	13:25	Kayak	2	
WP 488	3/7/2016	13:28	Kayak	3	
WK-1	3/7/2016	14:02	Powerboat	6	
WK-1	3/7/2016	14:07	Kayak	1	
WK-1	3/7/2016	14:07	Paddleboard	1	
WK-1	3/7/2016	14:07	Kayak	2	
WK-1	3/7/2016	14:07	Powerboat	2	
WK-1	3/7/2016	14:07	Scuba	1	Boat - 90 Hp
WK-1	3/8/2016	11:08	Kayak	2	
WK-1	3/8/2016	10:55	Kayak	16	
WK-1	3/8/2016	11:14	Powerboat	2	
WK-2	3/8/2016	11:23	Kayak	2	
Near Bridge	3/8/2016	11:31	Kayak	2	
WK-3	3/8/2016	11:43	Kayak	4	

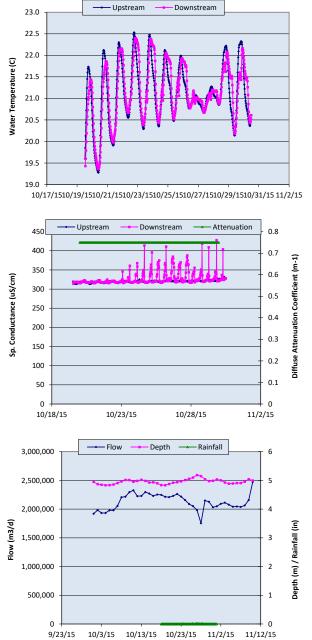


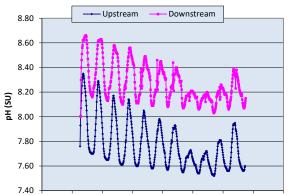



Ecosystem Metabolism Summary

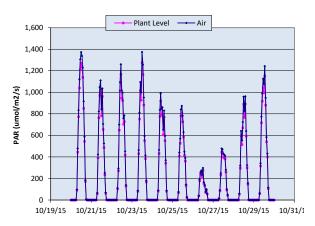
Wakulla Springs Baseline Assessment





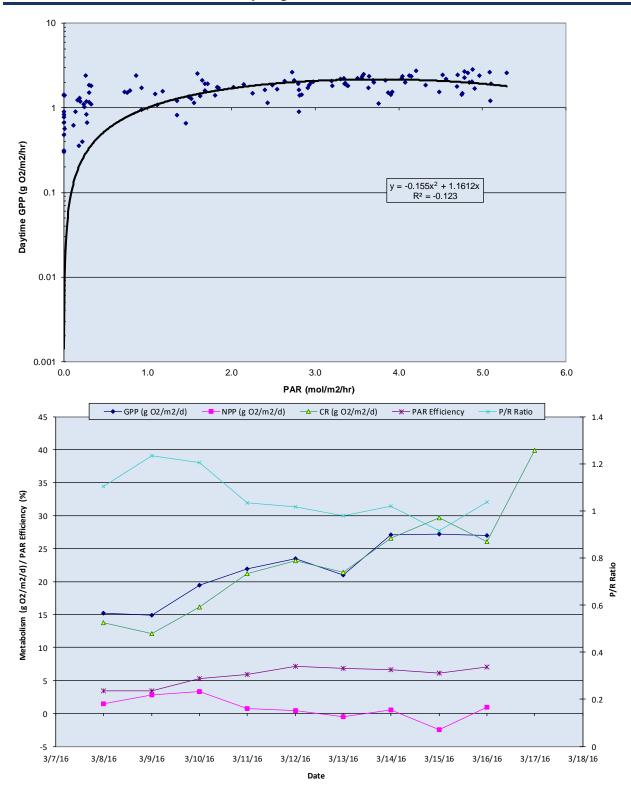


Wakulla Springs Baseline Assessment

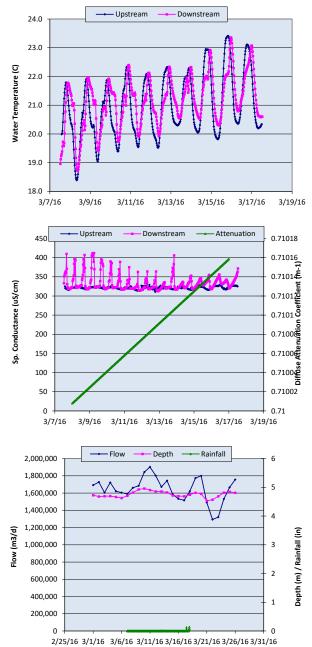


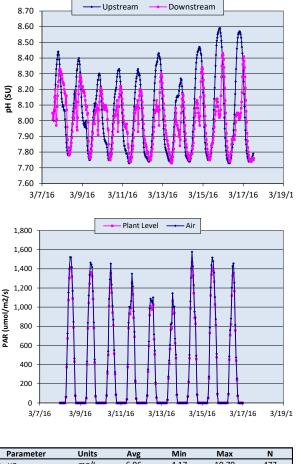
 $10/17/1 {\color{black}{50}} 0/21/1 {\color{black}{50}} 0/23/1 {\color{black}{50}} 0/27/1 {\color{black}{50}} 0/29/1 {\color{black}{50}} 0/31/1 {\color{black}{51}} 1/2/1$

Parameter	Units	Avg	Min	Max	N
DO - up	mg/L	5.50	3.19	9.73	526
down		5.93	3.57	9.14	520
Wtr Temp - up	С	21.1	19.3	22.5	526
down		21.2	19.4	22.4	527
pH - up	SU	7.77	7.52	8.35	526
down		8.27	8.00	8.66	526
SpCond - up	uS/cm	320	314	332	526
down		327	314	428	527
Flow - up	m³/d	2,127,268	1,754,195	2,471,042	41
Depth	m	4.96	4.83	5.19	41
Rainfall Total	in		0	.2	
PAR - air	umol/m ² /s	289	0.0	1,423	336
plant		242	0.0	1274	241
DO rate chng	g/m²/hr				
corr		0.102	-1.318	1.920	241
uncorr		0.235	-1.221	2.045	241



Wakulla Springs Baseline Assessment


Wakulla Springs Baseline Assessment



APPENDIX X

WAKULLA RIVER METABOLISM SUMMARY

Parameter	Units	Avg	Min	Max	N
DO - up	mg/L	6.96	4.17	10.70	477
down		7.15	4.48	9.81	481
Wtr Temp - up	С	21.0	18.4	23.4	477
down		21.2	18.7	23.4	481
pH - up	SU	8.05	7.73	8.59	477
down		8.00	7.73	8.43	481
SpCond - up	uS/cm	321	311	334	477
down		334	313	412	481
Flow - up	m³/d	1,043,256	0,000	1,903,436	41
Depth	m	4.40	3.78	4.96	41
Rainfall Total	in		().5	
PAR - air	umol/m ² /s	290	0.0	1,577	336
plant		362	0.0	1469	217
DO rate chng	g/m²/hr				
corr		-0.005	-1.938	1.552	217
uncorr		0.059	-1.908	1.634	217

Nutrient Assimilation Detail

Wakulla River estimated nutrient mass removals

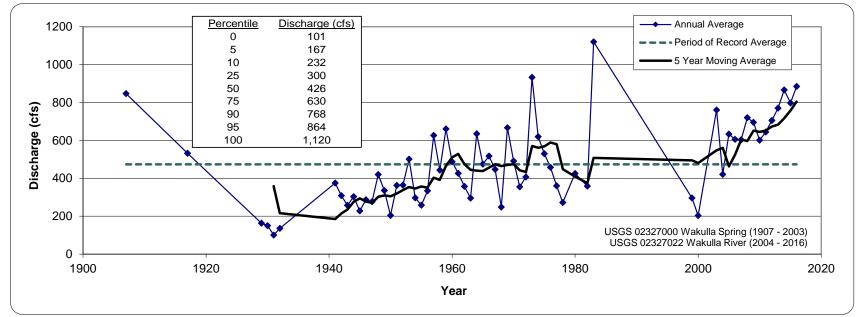
				Inflow	(WK-1) Outflow (WK-3)										
				Segment - Up Segment - Down					Removal						
			Conc	Flow	Mass	Mass	Conc	Flow	Mass	Mass	Со	nc		Mass	
Parameter	Units	Month	(mg/L)	(m³/d)	(kg/d)	(kg/ha/d)	(mg/L)	(m³/d)	(kg/d)	(kg/ha/d)	(mg/L)	(%)	(kg/d)	(kg/ha/d)	(%)
NH4-N	mg/L	Oct-15	0.040	2,130,968	85.2	5.5	0.010	2,130,968	21.3	1.4	0.030	75.0	63.9	4.14	75.0
		Mar-16	0.010	1,749,302	17.5	1.1	0.015	1,749,302	26.2	1.7	-0.005	-50.0	-8.7	-0.57	-50.0
		POR	0.026	1,940,135	51.4	3.3	0.012	1,940,135	23.8	1.5	0.014	53.7	27.6	1.78	53.7
NOx-N	mg/L	Oct-15	0.30	2,130,968	629	40.7	0.30	2,130,968	629	40.7	0.000	0.0	0.0	0.00	0.0
		Mar-16	0.50	1,749,302	866	56.0	0.37	1,749,302	638	41.3	0.130	26.3	227.4	14.71	26.3
		POR	0.39	1,940,135	747	48.3	0.33	1,940,135	634	41.0	0.059	15.2	113.7	7.36	15.2
Org N	mg/L	Oct-15	0.02	2,130,968	36.2	2.3	0.13	2,130,968	270.6	17.5	-0.110	-647.1	-234.4	-15.16	-647.1
		Mar-16	0.07	1,749,302	122.5	7.9	0.05	1,749,302	84.0	5.4	0.022	31.4	38.5	2.49	31.4
		POR	0.04	1,940,135	79.3	5.1	0.09	1,940,135	177.3	11.5	-0.050	-123.5	-98.0	-6.34	-123.5
TKN	mg/L	Oct-15	0.04	2,130,968	93.8	6.1	0.14	2,130,968	291.9	18.9	-0.093	-211.4	-198.2	-12.82	-211.4
		Mar-16	0.07	1,749,302	119.0	7.7	0.05	1,749,302	87.5	5.7	0.018	26.5	31.5	2.04	26.5
		POR	0.05	1,940,135	106.4	6.9	0.10	1,940,135	189.7	12.3	-0.043	-78.4	-83.3	-5.39	-78.4
TN	mg/L	Oct-15	0.35	2,130,968	750	48.5	0.43	2,130,968	921	59.5	-0.080	-22.7	-170.5	-11.03	-22.7
		Mar-16	0.58	1,749,302	1,006	65.1	0.43	1,749,302	749	48.4	0.147	25.6	257.1	16.63	25.6
		POR	0.45	1,940,135	878	56.8	0.43	1,940,135	835	54.0	0.022	4.9	43.3	2.80	4.9

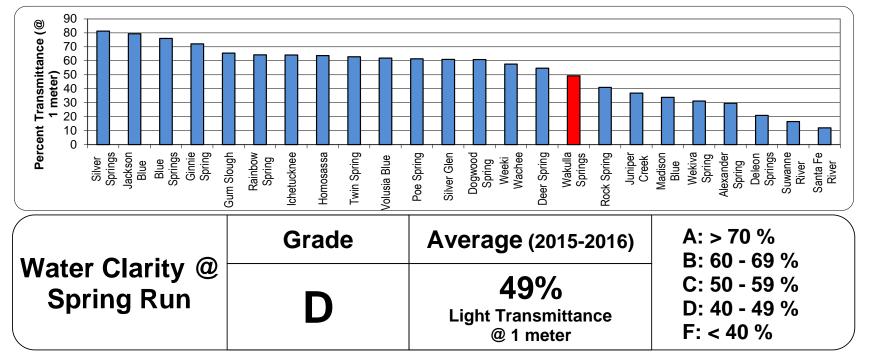
Segment Area (ha): 15.46

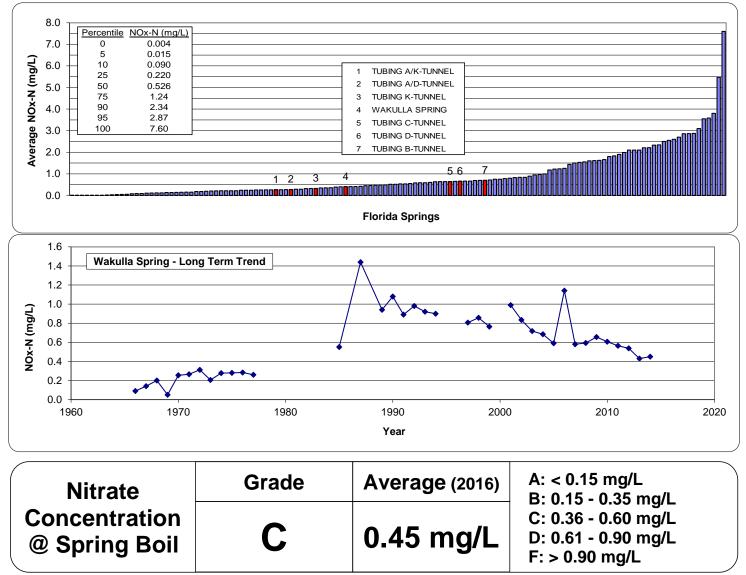
Particulate Export Detail

												Labo	ratory An	alysis		Total	Sample						
Station	Date	Start Time	Sample #	Upstream Area (m²)		Flow Rate (m ³ /s)	Net Area (m ²)	Water Velocity (m/s)	Volume Filtered (m ³)	Total Sample Volume (mL)	Vol. Dried (mL)	Dry Wt. (g)	Ash Wt. (g)	% Ash	Ash-Free Dry Wt. (g)	Dry Wt. (g)	Ash-Free Dry Wt. (g)	Dry Matter (g/m ³)	Organic Matter (g/m ³)	Dry Matter (g/d)	Organic Matter (g/d)	Dry Matter (g/m²/d)	Organic Matter (g/m²/d)
WK-1	10/20/15	13:20	35	598,930	120	25.57	0.1886	0.34	7.79	92	56	0.36	0.15	41.29	0.2090	0.585	0.3434	0.07504	0.04405	165,783	97,328	0.277	0.163
WK-1	10/20/15	13:27	54	598,930	120	25.57	0.1886	0.33	7.38	93	52	0.46	0.20	43.75	0.2610	0.830	0.4668	0.11244	0.06325	248,417	139,735	0.415	0.233
WK-1	10/20/15	13:34	88	598,930	120	25.57	0.1886	0.33	7.45	97	61	0.47	0.23	48.63	0.2430	0.752	0.3864	0.10097	0.05187	223,073	114,602	0.372	0.191
WK-3	10/20/15	11:49	43	752,709	120	25.57	0.1886	0.30	6.69	93	63	0.24	0.11	48.12	0.1240	0.353	0.1830	0.05273	0.02736	116,503	60,445	0.155	0.080
WK-3	10/20/15	12:00	69	752,709	120	25.57	0.1886	0.26	5.93	98	62	0.36	0.16	44.66	0.1970	0.563	0.3114	0.09487	0.05250	209,582	115,977	0.278	0.154
WK-3	10/20/15	12:09	28	752,709	120	25.57	0.1886	0.23	5.17	82	55	0.35	0.13	36.65	0.2230	0.525	0.3325	0.10145	0.06427	224,130	141,992	0.298	0.189
WK-1	10/29/15	14:10	53	598,930	120	24.86	0.1886	0.40	8.97	103	65	0.53	0.20	38.39	0.3290	0.846	0.5213	0.09437	0.05814	202,720	124,897	0.338	0.209
WK-1	10/29/15	14:17	21	598,930	120	24.86	0.1886	0.41	9.17	70	70	0.85	0.27	31.76	0.5780	0.847	0.5780	0.09233	0.06301	198,338	135,348	0.331	0.226
WK-1	10/29/15	14:26	44	598,930	120	24.86	0.1886	0.40	8.97	96	63	0.45	0.17	37.03	0.2840	0.687	0.4328	0.07665	0.04826	164,641	103,677	0.275	0.173
WK-3	10/30/15	10:20	42	752,709	120	24.86	0.1886	0.32	7.24	102	53	0.64	0.28	43.55	0.3630	1.237	0.6986	0.17087	0.09646	367,046	207,213	0.488	0.275
WK-3	10/30/15	10:24	57	752,709	120	24.86	0.1886	0.27	6.14	110	62	0.74	0.34	45.56	0.4050	1.320	0.7185	0.21503	0.11705	461,912	251,444	0.614	0.334
WK-3	10/30/15	10:38	26	752,709	120	24.86	0.1886	0.23	5.17	115	63	0.75	0.31	42.09	0.4320	1.362	0.7886	0.26324	0.15244	565,470	327,457	0.751	0.435

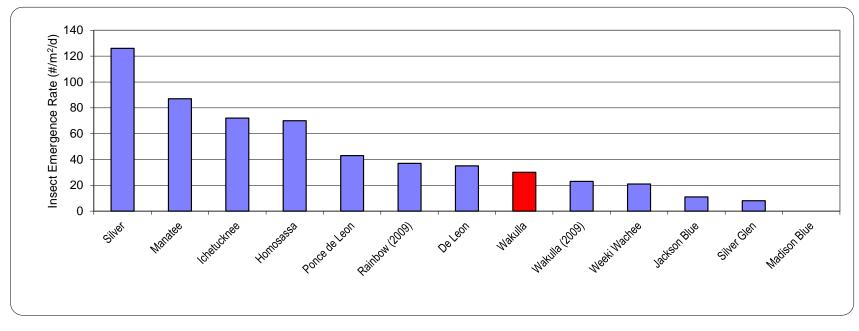
												Labo	ratory An	alysis		Total	Sample						
Station	Date	Start Time	•	Upstream Area (m ²)		Flow Rate (m³/s)	Net Area (m ²)	Water Velocity (m/s)	Volume Filtered (m ³)	Total Sample Volume (mL)		Dry Wt. (g)	Ash Wt. (g)		Ash-Free Dry Wt. (g)		Ash-Free Dry Wt. (g)	Dry Matter (g/m ³)	Organic Matter (g/m ³)	Dry Matter (g/d)	Organic Matter (g/d)	Matter	Organic Matter (g/m²/d)
WK-1	3/8/16	10:38	28	598,930	120	19.23	0.1886	0.29	6.55	60	60	0.62	0.29	47.42	0.3260	0.620	0.3260	0.09462	0.04975	157,188	82,650	0.262	0.138
WK-1 *	3/8/16	10:44	17	598,930	120	19.23	0.1886	0.36	8.21	57	57	0.36	-0.44	-120.88	0.8040	0.364	0.8040	0.04435	0.09796	73,672	162,727	0.123	0.272
WK-1	3/8/16	10:50	67	598,930	120	19.23	0.1886	0.33	7.45	60	60	0.38	0.16	41.78	0.2230	0.383	0.2230	0.05142	0.02994	85,413	49,731	0.143	0.083
WK-3	3/8/16	9:51	42	752,709	120	19.23	0.1886	0.56	12.76	65	65	0.97	0.48	49.84	0.4850	0.967	0.4850	0.07578	0.03801	125,894	63,142	0.167	0.084
WK-3	3/8/16	9:58	26	752,709	120	19.23	0.1886	0.41	9.31	69	69	1.15	0.21	18.08	0.9380	1.145	0.9380	0.12297	0.10074	204,278	167,347	0.271	0.222
WK-3	3/8/16	10:08	84	752,709	120	19.23	0.1886	0.47	10.69	60	60	1.17	0.43	36.63	0.7440	1.174	0.7440	0.10981	0.06959	182,426	115,609	0.242	0.154

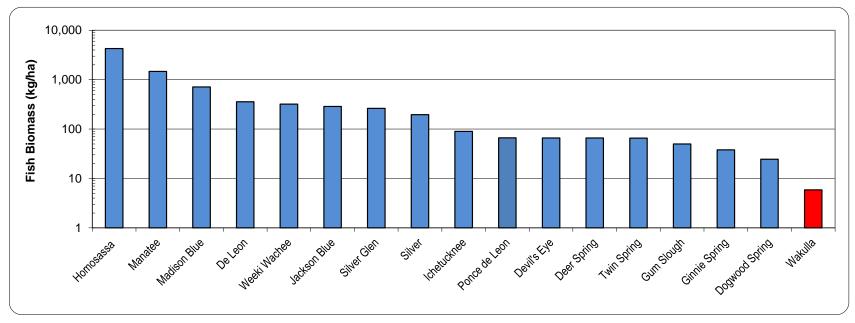

* flagged sample - questionable data

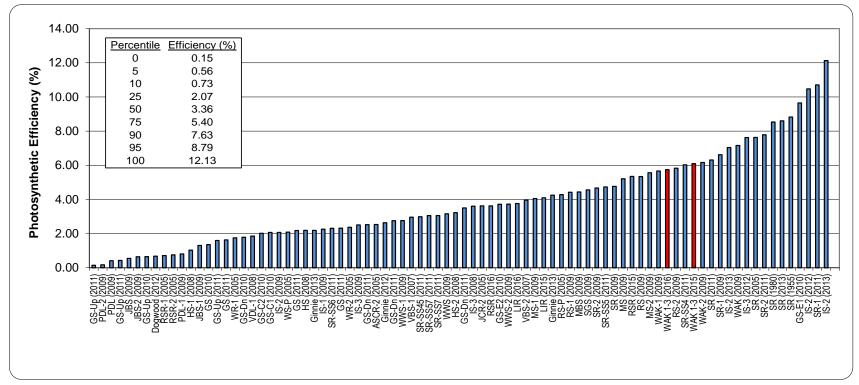

Wakulla Springs 2016 Report Card



Spring	Grade	Average (2012-2016)	A: > 654 cfs B: 493 - 653 cfs
Discharge	Α	805 cfs	C: 364 - 492 cfs D: 290 - 363 cfs F: < 289 cfs






Adult Aquatic	Grade	Average (2015-2016)	A: > 100 B: 75 - 99
Emergence @ Spring Run	D	30 insects/m²/day	C: 50 - 74 D: 25 - 49 F: < 24

	Grade	Average (2016)	A: > 300 B: 200 - 299
Fish Biomass	F	5.9 Biomass kg/ha	C: 100 - 199 D: 50 - 99 F: < 50

	Grade	Average (2015-2016)	A: > 7.0 B: 5.0 - 6.99
Photosynthetic Efficiency	В	5.92 %	C: 3.0 - 4.99 D: 1.0 - 2.99 F: < 1.0